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Abstract: 
The main aim of this paper is to use chaos methodology in an attempt to predict the Baltic 
Dry Indices (BDI, BCI, BPI) using the invariant parameters of the reconstructed strange 
attractor that governs the system’s evolution. This is the result of the new emerging field in 
econo-physics which mainly consists of autonomous physic-mathematical models that have 
been already applied to financial analysis. The proposed methodology is estimating the 
optimal delay time and the minimum embedding dimension with the method of False Nearest 
Neighbors (FNN). Monitoring the trajectories of the corresponding strange attractor we 
achieved a 30, 60, 90 and 120 time steps out of sample prediction. 
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1. Introduction 

 
Predicting Baltic Dry Indices is possible applying algorithms used in physical 
sciences. This article combines finance and non linear methods from chaos theory to 
examine the predictability of the Baltic Dry Indices. The proposed methodology 
applies non linear time series analysis for the BCI, BDI and BPI indices covering the 
period from 04-01-2000 until 04-01-2008. In particular the method of the False 
Nearest Neighbor (FNN) is used in the first step to evaluate the invariant parameter 
of the system as the minimum embedding dimension. In a second stage using the 
reconstructed state space the article achieves an out of sample multi step time series 
prediction. The methodology is very dynamic compared to traditional ones 
(Thalassinos et al., 2009). The most important property of the proposed 
methodology is the fact that there is no need to know from trial to error some 
constants to fit and extrapolate the time series. The methodology calculates the 
invariant parameters of the system itself. The fact that shipping indices are sensitive 
in irregular shocks and crises which are innate elements in chaotic systems, their 
predictability is much easier using chaotic methodology than any other forecasting 
method. Other benefits as they are pointed out in Thalassinos et al., (2009) are: 

• The possibility to extract information about a complex dynamic system, 
which generates several observed time series by using only one of them. 

• To analyze the image-system with the same topology that preserves the main 
characteristics of the genuine system. 

The article combines maritime time series daily data for the period of 04-01-2000 to 
04-01-2008 (total number of observations 2000) with chaos methodology to 
examine the predictability of the three Baltic Dry Indices as the most characteristic 
indices in the maritime industry namely the BCI, BDI and BPI. 

 
2.  BCI Time Series 
 
According to the theory of observed chaotic data (Abarbanel, 1996; Sprott, 2003; 
Hanias et al., 2007a, 2007b; Thalassinos et al., 2009) any non-linear time series can 
be presented as a set of signals x=x(t) as it shown at Figure 1. The sampling rate is 
Δt=1 day and the number of data N=2000. As it is presented in Figure 1 the 
corresponding index had a significant number of structural shifts in the period under 
study with a max of 16,000 and a min of 1,000 points. 
 
From the time series plots of the BCI in Figure 1, 1700 data points has been selected 
as the “training data set”, in other words the data that are used for the state space 
reconstruction and the other 300 data points as the “test data set” for out of sample 
period prediction.  
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Figure 1: Time Series plots of the BCI 
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3. State space reconstruction 

 
3.1  Time delay τ 

From the given data a vector , i=1, 2, … N, where N=1700, in the m order 
dimensional phase space given by the following relation (Kantz et al., 1997; Takens, 
1981; Hanias et al., 2007a, 2007b; Thalassinos et al., 2009) is constructed as shown 
in equation (1): 

iX
r

iX
r

 = {xi, xi-τ, xi-2τ,…., xi+(m-1)τ}   (1) 

where  represents a point in the m dimensional phase space in which the attractor 
is embedded each time, where τ is the time delay τ = iΔt. The element xi represents a 
value of the examined scalar time series in time, corresponding to the i-th 
component of the time series. By using this method the phase space reconstruction 
to the problem of proper determining suitable values of values of m and τ is 
constructed. The next step is to find the time delay (τ) and the embedding dimension 
(m) without using any other information apart from the historical values of the 
indices. 

iX
r

 
Equation (2) is used to calculate the time delay by using the time-delayed mutual 
information proposed by Fraser et al., 1986 and Abarbanel, 1996.  
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In equation (2), p(xi) is the probability of value xi and p(xi, xi+τ) denotes joint 
probability. I(τ) shows the information (in bits) being extracted from the value in 
time xi about the value in time xi+ττ. The function I can be thought of as a nonlinear 
generalization of the autocorrelation function. For a random process x(t) the I(t), is a 
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measure of the information about x(t+τ) contained in x(t). The first nadir of I(τ) 
gives the delay, tau0, such that x(t+tau0) adds maximal information to that already 
known from x(t). This tau0 is returned as an estimate of the proper time lag for a 
delay embedding of the given time series. The time delay is calculated as the first 
minimum of the mutual information (Kantz et al., 1997; Fraser et al., 1986; Casdagli 
et al., 1991). Mutual information against the time delays (with a minimum at 54 
time steps) for our time series is presented in Figure 2.  
 

Figure 2: Mutual information I vs. time delay τ 
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3.2 Embedding dimension m 
After obtaining the satisfactory value of τ, the embedding dimension m is to be 
determined in order to finish the phase space reconstruction. For this purpose the 
method of False Nearest Neighbors (Kantz et al., 1997 Kennel et al., 1992) is used. 
More specifically, the method is based on a fact that when embedding dimension is 
too low, the trajectory in the phase space will cross itself.  If we are able to detect 
these crossings, we may decide whether the used m is large enough for correct 
reconstruction of the original phase space, when no intersections occur or not. When 
intersections are present for a given m, the embedding dimension is too low and we 
have to increase it at least by one. Then, we test the eventual presence of self-
crossings again (Kennel et al., 1992; Abarbanel 1996). The practical realization of 
the described method is based on testing of the neighboring points in the m-
dimensional phase space. Typically, we take a certain amount of points in the phase 
space and find the nearest neighbor to each of them. Then we compute distances for 
all these pairs and also their distances in the (m+1) dimensional phase space. The 
rate of these distances is given by equation (3) as follows: 
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    (3) 
where yi(m) represents the reconstructed vector, belonging to the i-th point in the m-
dimensional phase space and index the n(i) denotes the nearest neighbour to the i-th 
point. If P is greater than some value Pmax, we call this pair of points False Nearest 
Neighbors (i.e. neighbors, which arise from trajectory self-intersection and not from 
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the closeness in the original phase space). In the ideal case, when the number of 
false neighbors falls to zero, then the value of m is found. For this purpose we 
compute the rate of false nearest neighbours in the reconstructed phase space using 
the formula in equation (4):  

Aminmi Rxx ≥− ++ ττ )(      (4) 
where RA is the radius of the attractor, 
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      (6) 
is the average value of time series. 
 

When the following criterion , (7) is satisfied then it can be used to 
distinguish between true and false neighbours (Kennel et al., 1992). The dimension 
m is found when the percent of false nearest neighbors decreases below some limit, 
(Kugiumtzis et al., 1994), so we choose Pmax=10 as used typically. Before we 
apply the above procedure, we must determine the Theiler window for out time 
series and exclude all pairs of points in the original series which are temporally 
correlated and are closer than this value of Theiler window. For this purpose we 
produce space time separation plots (Kantz et al., 1997) as shown in Figure 3(a). 

maxPP ≥

  

Figure 3: Space time separation plot 
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(a)     (b) 
(a) Density function estimate of the median contour (upper graph) in addition to a suggested 
range of suitable orbital lags.   (b) The most populous values of the median contour are 
highlighted by a cross-hatched area that covers a plot of the median curve (lower). 
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The space time separation plots where produced with a desired embedding 
dimension 5, τ=54, and the probability associated with the first contour equal to 0.2  
 
In Figure 3 we had plot a summary of the space-time contours including a density 
function estimate of the median contour in addition to a suggested range of suitable 
orbital lags. In the latter case, the most populous values of the median contour are 
highlighted by a cross-hatched area that covers a plot of the median curve. The 
suggested range for a suitable orbital lag is based on the range of values that first 
escape this cross-hatched region, so we can choose a Theiler window from 53 to 
117. In our case we choose the Theiler window to be 65. Then we used matlab code 
to calculate the quantity P. 
 
The rate of false neighbors that is under the above limit Pmax=10 is achieved for m 
= 4, thus this value should be suitable for the purpose of phase space reconstruction. 
This is shown in Figure 4 for our time series. 

 
Figure 4: Percent of False Nearest Neighbors number vs. m 
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4.  Time Series Prediction of BCI 

 
The next step is to predict the evolution of BCI by computing weighted average of 
evolution of close neighbors of the predicted state in the reconstructed phase space 
(Miksovsky et al., 2007; Stam et al., 1998). The reconstructed m-dimensional signal 
projected into the state space can exhibit a range of trajectories, some of which have 
structures or patterns that can be used for system prediction and modeling. 
Essentially, in order to predict k steps into the future from the last m-dimensional 

vector point , we have to find all the nearest neighbors  in the  }{ m
Nx }{ m

NNx

ε-neighborhood of this point. To be more specific, let’s set  to be the set of 

points within ε of  (i.e. the ε-ball). Thus any point in  is closer to 

)( m
NxBε

}{ m
Nx )( m

NxBε
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the than ε. All these points  come from the previous trajectories of the 

system and hence we can follow their evolution k-steps into the future . The 

final prediction for the point  is obtained by averaging over all neighbors’ 
projections k-steps into the future. The algorithm can be written as in equation (8) as 
follows: 

}{ m
Nx }{ m

NNx

}{ m
kNNx +

}{ m
Nx

∑
∈∈

+

∈

+ =
)()(

1}{
m
NN

m
NN xBX

m
kNNm

NN

m
kN x

xB
x

   (8) 

where 
)( m

NNxB∈  denotes the number of nearest neighbors in the neighborhood of 

the point ( Kantz et al., 1997). As an example we suppose that we want tο 
predict k=2 steps ahead. The basic principle of the prediction model is visualized in 

Figure 5. The blue dot  represents the last known sample, from which we want 
to predict one and two steps into the future. The blue circles represent ε-
neighborhoods in which three nearest neighbors were found. 
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Figure 5:  Basic prediction principle of the simple deterministic model 
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The next step in the algorithm is to check that the projections, one and two steps into 

the past, of the points in are also nearest neighbors of the two previous }{ m
NNx
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readings  and  respectively. This criterion excludes unrelated 

trajectories that enter and leave the ε-neighborhood of  but do not ‘track back’ 

to ε- neighborhoods of  and , thus making them unsuitable for 
prediction. Assuming that any nearest neighbors have been found and checked using 
the criterion detailed previously, we project their trajectories into the future and 

average them to get results for  and . We used the values of τ and m 
from our previous analysis so the appropriate time delay τ was chosen to be τ=54. 
We use as embedding dimension the 2*m = 8 (Sprott J. C) and for the optimum 
number of nearest neighbors we used the value of embedding dimension m= 4. 
These values of embedding dimension and number of nearest neighbors gave the 
better results for k=30 time steps ahead. We apply the procedure for in sample 
forecasting until data point 1700 as shown at Figure 6 then we applied the procedure 
for out of sample prediction from data point 1700 to data point 1730 as shown in 
Figure 7. 
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Figure 6: Actual and in sample predicted time series for k=30 days ahead 
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Figure7: Actual and out of sample predicted time series for k=30 days ahead 
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Actual and predicted time series for k=60, 90, 120 time steps ahead are presented in 
Figures 8, 9, 10 respectively for out of sample period.  

 
Figure 8: Actual and out of sample predicted time series for k=60 days ahead 
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Figure 9: Actual and out of sample predicted time series for k=90 time steps ahead 
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Figure 10: Actual and out of sample predicted time series for k=120 time steps ahead 
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The prediction error for establishing the quality of the fit was chosen to be the 
classical root mean square error (RMSE) and found to be 8.99x10-2, 9.54x10-2, 
2.17x10-1, 2.26x10-1 for k=30, 60, 90, 120 respectively. 
5.  Time Series Prediction of BDI 

 
The BDI time series is presented as a signal x=x(t) as it shown in Figure 11. It 
covers data from 04-01-2000 to 04-01-2008. The sampling rate was Δt=1 day and 
the number of data are N=2000.  

 
Figure 11: BDI Time Series 
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From this time series we have choose 1700 data as the “training data set”, in other 
words the data that we used for the state space reconstruction and the other 300 data 
as the “test data set” for our out of sample prediction.  We used the same procedure 
as before and we had estimated the delay time, Theiler window and embedding 
dimension. Mutual information against the time delays (with a minimum at 55 time 
steps) for BDI time series is presented in Figure 12. 
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Figure 12: Mutual information I vs. time delay τ 
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The space time separation plot and the density function estimation plots are shown 
in Figure 13. From this plot we estimate the Theiler window to be 100.  
 

Figure 13: Space time separation plot 
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(a)      (b) 

(a) Density function estimate of the median contour (upper graph) in addition to a suggested 
range of suitable orbital lags.  
(b) The most populous values of the median contour are highlighted by a cross-hatched area 
that covers a plot of the median curve (lower). 
 
The percent of false nearest neighbors number FNN vs. m is shown in Figure 14. 
From this it is clear that the embedding dimension is 4.  
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Figure 14: Percent of false nearest neighbors number FNN vs. m 
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The next step is to predict 30, 60, 90 and 120 time steps ahead. Figures 15, 16, 17, 
18 and 19 are shown the in sample and out of sample period predictions.  
 

Figure 15: Actual and in sample predicted time series for k=30 days ahead 
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Figure 16: Actual and out of sample predicted time series for k=30 days ahead 
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Figure 17: Actual and out of sample predicted time series for k=60 days ahead 
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Figure 18: Actual and out of sample predicted time series for k=90 time steps ahead 
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Figure 19: Actual and out of sample predicted time series for k=120 time steps ahead 
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The prediction error for establishing the quality of the fit was chosen to be the 
classical root mean square error (RMSE) and found to be 5.68x10-2, 5.99x10-2, 
6.53x10-2, 6.80x10-2 for k=30, 60, 90 and 120 respectively. 
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5.  Time Series Prediction of BPI 

 

The BPI time series is presented as a signal x=x(t) as it shown in Figure 20. It covers 
data from 04-01-2000 to 04-01-2008. The sampling rate was Δt=1 day and the 
number of data are N=2000. 
 

Figure 20: BPI time series 

0 200 400 600 800 1000 1200 1400 1600 1800 2000
0

1000

2000

3000

4000

5000

6000

7000

B
P

I

Time units (days)

 
From this time series we have choose  1700 data as the “training data set”, in other 
words the data that we used for the state space reconstruction and the other 300 data 
as the “test data set” for our out of sample prediction.  
 
We used the same procedure as before and we have estimated the delay time, Theiler 
window and embedding dimension. Mutual information against the time delays 
(with a minimum at 55 time steps) for BDI time series is presented in Figure 21. 
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Figure 21: Mutual information I vs. time delay τ 

0 20 40 60 80 100

0.8

1.0

1.2

1.4

1.6

1.8

2.0

I

τ

 
The space time separation plot and density function estimation plots are shown in 
Figure 22. From this plot we estimate the Theiler window to be 100. 

 
Figure 22: Space time separation plot 
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 (a)      (b)  

(a) Density function estimate of the median contour (upper graph) in addition to a suggested 
range of suitable orbital lags.  
(b) The most populous values of the median contour are highlighted by a cross-hatched area 
that covers a plot of the median curve (lower). 
 
The percent of false nearest neighbors number FNN vs. m is shown in Figure 23. 
From this fig it’s clear that the embedding dimension is 4.  
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Figure 23: Percent of false nearest neighbors number FNN vs. m 
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The next step is to predict 30, 60, 90 and 120 time steps ahead. Figures 24, 25, 26, 
27 and 28 are shown the in sample and out of sample period predictions.  

 

Figure 24: Actual and in sample predicted time series for k=30 days ahead 
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Figure 25: Actual and out of sample predicted time series for k=30 days ahead 
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Figure 26: Actual and out of sample predicted time series for k=60 days ahead 
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Figure 27: Actual and out of sample predicted time series for k=90 days ahead 
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Figure 28: Actual and out of sample predicted time series for k=120 days ahead. 
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The prediction error for establishing the quality of the fit was chosen to be the 
classical root mean square error (RMSE) and found to be 7.10x10-2, 7.56x10-2, 
1.24x10-1, 2.36x10-1 for k=30, 60, 90 and 120 respectively. 

 
6.  Conclusion 
 
In this paper chaotic analysis has been used to predict Baltic Dry Indices time series. 
After estimating the minimum embedding dimension, the proposed methodology has 
pointed out that the system is characterized as a high dimension chaotic. From 
reconstruction of the systems’ strange attractors, it has been achieved a 30, 60, 90 
and 120 out of sample time steps prediction. In Table 1 the RMS values of the 
corresponding prediction are shown.  

 
Table 1: RMS values 

 

RMS 
 30 DAYS 60 DAYS 90 DAYS 120 DAYS 
BDI 5.68x10-2 5.99x10-2 6.53x10-2 6.80x10-2

BCI 8.99x10-2 9.54x10-2 2.17x10-1 2.26x10-1

BPI 7.10x10-2 7.56x10-2 1.24x10-1 2.36x10-1

 
It is clear that the BDI has the minimum error and gives the best prediction 
compared to the other two indices. The prediction power of the suggested method is 
limited by the properties of the original system and the series alone. Because the 
series represents the only source of information for the system it is important to be 
as long as possible. Too short time series will not worsen the prediction only but it 
may also make the proper reconstruction of the phase space impossible. Another 
important limitation factor is the eventual contamination by noise – evidently, the 
more noise is included in the series, the less accurate result can be gained.  However 
the prediction horizon of 120 days would be useful for economical analysis as it can 
reveal the trend in a very good manner. 
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