Rice, Risk and Rationality:
Supply Response in West Bengal, India*

Subrata Ghatak
Economics Department
Kingston University, KT1 2EE U.K.

James L. Seale, Jr.
University of Florida
Gainesville, Florida 32611, U.S.A. *

Abstract

Most studies on rational response of rice producers in less developed countries (LDCs) assume risk–neutrality. However, the role of risk in producer decision making has been recognised as an important determinant of production. It has been shown that competitive risk–averse firms produce a smaller output under price uncertainty than under the assumption of price certainty and that the higher the overall level of risk, ceteris paribus, the lower the output. It is also shown that an increase in price risk may imply a fall in a firm's production in the face of a decreasing absolute risk aversion.

If farmers are rational and risk averse in LDCs, they should consider not only expected output prices and yields when allocation resources, but also expected risk in output prices and yields. The extent to which price and yield risks do in fact affect producer decisions is an empirical question. In this paper, we develop a single–equation model as well as a system of equations model to estimate supply response under risky conditions when agents are rational. In particular, a rational expectations model incorporating risk variables is presented. Then, we apply the models to a developing country (Bengal, India) and estimate the validity of the models.

Keywords: Rice, Risk, Rationality, Supply Response, LDC: Agriculture, West Bengal, India

JEL Classification: O13, O53, Q11, Q18

* The authors wish to thank Jonq–Ying Lee and Charles Moss and two anonymous referees of this journal for their helpful comments and Sharon Bullivant for her assistance. The usual disclaimer applies. Paper presented at the International Symposium on Economic Modelling, Athens, Greece.
Introduction

Production of rice in a less developed country (LDC) is the product of yield per acre and acreage under cultivation. Acreage and yield can be regarded as a function of a number of "controlled" variables (e.g., fertilizers, irrigation water, input and output prices or profits, use of pesticides, etc.) as well as "uncontrolled" variables (e.g., rainfall, temperature, humidity, etc.). The productivity coefficients of the different factors in the production system differ spatially and inter-temporally due to the variations in the use of the explanatory factors. Changes in the production of an important crop like rice in a LDC can thus be influenced by men or nature. An important factor behind the recent changes in rice production in large parts of South and South-East Asia including India has been technical change, a phenomenon which is often labelled as the "Green Revolution." The significance of such an event in the LDCs has been enormous. At the micro-level, it raised farm production, income, savings and investment. At the macro-level, gains in rice production reduced the rate of inflation, food imports and balance of payments problems (e.g., World Bank 1990; Balakrishnan 1990). In this context, the role of providing "right" price incentives to increase production and supply has been repeatedly emphasized in the literature (e.g., Behrman 1968; Ghatak and Ingersent 1984; Ghatak 1987; Stevens and Jabara 1988). It is now well acknowledged that farmers in LDCs respond "rationally" to price signals.

Most studies on rational response of rice producers in LDCs assume risk-neutrality (for exceptions, see Behrman 1968; Roumas-sett 1976). However, the role of risk in producer decision making has been recognised as an important determinant of production (Sandmo, 1971). It has been shown that competitive risk-averse firms produce a smaller output under price uncertainty than under the assumption of price certainty and that the higher the overall level of risk, ceteris paribus, the lower the output. It is also shown
that an increase in price risk may imply a fall in a firm's production in the face of a decreasing absolute risk aversion.

If farmers are rational and risk averse in LDCs, they should consider not only expected output prices and yields when allocation resources, but also expected risk in output prices and yields. The extent to which price and yield risks do in fact affect producer decisions is an empirical question. In this paper, we first review the literature on risk and supply response in agriculture. In the next section, we develop a single-equation model as well as a system of equations model to estimate supply response under risky conditions when agents are rational. In particular, a rational expectations model incorporating risk variables is presented. Then, we apply the models to a developing country (Bengal, India) and estimate the validity of the models. The final section draws conclusions.

Review of Literature

Several researchers have incorporated price risk into supply response models, but they have generally used arbitrary, extrapolative measures of expected price risk. Traditionally, price risk has been proxies by the variance or standard deviation of output prices or returns. Behrman [1968] was the first to incorporate risk variables into econometric supply models. In Behrman's model, producers formed their price expectations adaptively. Price risk was defined as a moving standard deviation based on the past three periods for observed prices. Ryan also specified adaptive expectations and used a definition similar to Behrman's for price risk; Bailey and Womack assumed adaptive expectations and defined price risk in terms of total price variability; Brorsen et al. defined price risk in terms of a weighted moving-average of the absolute values of previous price changes. All these definitions preclude a direct relationship between price expectations and price risk.

Other researchers have defined price risk as a function of the difference between actual and expected prices. Just, as well as Hurt
and Garcia, defined price risk as the squared deviation between actual and expected price, where expected price was based on adaptive expectations. Traill also assumed producers form expectations adaptively and defined price risk as the absolute value of the difference between expected and actual price. Traill discussed the conceptual superiority of defining price risk in terms of the difference between actual and expected prices. It is expected price riskiness at the time production decisions are made that is important to a decision maker, not actual price variability. If a producer can forecast output prices accurately, price variability will not be associated with risk. Highly variable output prices that can be forecasted precisely will be less risky than those having less variability that cannot be forecasted with precision.

The empirical evidence is mixed as to whether increasing price risk leads to decreases in the quantity supplied. Behrmann, Brorsen et al., Just, and Ryan found evidence to support this hypothesis, while the findings of Traill and Bailey and Womack were inconclusive. Traill suggested the results may be due to producers holding relatively stable long-run expectations about a crop's riskiness, but adjusting these upon learning new information. Thus, the long-term risk effects were reflected in the intercept, and only short-run adjustments were reflected by the risk variable.

A major weakness of these earlier models is their assumption about producer expectations. Adaptive expectations are \textit{ad hoc}, and since they are functions of past values of the variables being forecasted, do not allow producers to incorporate information about the system's structure or its exogenous variables into their forecasts. Rational expectations allow producers to form expectations for a subsequent period conditional upon current information contained in all exogenous variables as well as the structural relationships in the market. This approach to modelling agricultural supply has been shown by Goodwin and Sheffrin, Shonkwiler and Emerson, and Eckstein (1984, 1985) to appropriately model produ-
cer expectations and to yield results often superior to models based on adaptive expectations. Yet, the usual assumption of certainty equivalence—that only the first moments (means) of variables affect supply response—may be too restrictive since it does not allow risk to play a role in supply response.

Single – Equation, Partial Adjustment Models

In this section, we present the well-known partial adjustment model, but extend it by including price and yield risk variables explicitly. Three types of expectations (i.e., perfect foresight, static expectation, and adaptive expectations) are incorporated into the model as well as comments on estimation procedures for these variations of the model.

Model – A: A Model of Supply Response under Risk in LDC Agriculture

This single-equation is a simple partial adjustment model which includes risk explicitly as a factor which accounts for changes in acreage under cultivation. Let

\[
A^* = \alpha \hat{P}_t + \beta Y_t + \gamma V_t + \delta W_t
\]

\[
A_t - A_{t-1} = \lambda (A^*_t - A_{t-1}); 0 \leq \lambda \leq 1
\]

\[
\hat{p}_t - \hat{p}_{t-1} = \theta (\hat{p}_t - \hat{p}_{t-1}); 0 \leq \theta \leq 1
\]

\[
Y_t - Y_{t-1} = \delta (Y_t - Y_{t-1}); 0 \leq \delta \leq 1
\]

where

- A^* = desired area under crop,
- A_t = actual area planted,
- \hat{p}_t = expected relative price (\hat{p}own/\hat{p} competitive crop),

1 The discussions of estimation procedures for these models draw heavily on Maddala, Chapter 10.
\(Y^e_t = \text{expected relative yield (} Y^e_{\text{own}}/Y^e_{\text{competitive crop}}), \)

\(V_{pt} = \sigma^2_{pt} \text{ price (measures p risk)}, \)

\(V_{yt} = \sigma^2_{yt} \text{ price (measures y risk)}, \)

\(W_t = \text{weather (deviations from during the normal sowing period)}, \) and

\(I_t = \text{irrigated area under all crops}. \)

Substituting (1) into (2), one obtains

\[
A e = \lambda + \lambda_1 \hat{P}^e_t + \lambda_2 Y^e_t + \lambda_3 \hat{P}^e_t + \lambda_4 Y_t + \lambda_5 \hat{P}^e_t + \lambda_6 Y_t + (\lambda A)_{t-1}.
\]

Several methods are available for estimating equation (5). The first step is to substitute the appropriate expectation into (5) (see below). Note, that for a given \(\lambda \), we have a model linear in the parameter and variables. Maddala suggests a search procedure over \(\lambda \) in which one would estimate

\[
A e = \alpha + \alpha_1 \hat{P} + \alpha_2 Y^e + \alpha_3 \hat{P} + \alpha_4 Y + \alpha_5 \hat{P} + \alpha_6 Y + \alpha_7 A + (\alpha A)_{t-1}
\]

with ordinary least squares (conditional on \(\lambda \)) and iteratively choose \(\lambda \) to minimize the residual sum of squares (conditional on \(\lambda \)). Note that the parameters of (6) can be considered short-run parameters.

Alternatively, recognize that equation (5) is a nonlinear least squares problem which can be estimated with maximum likelihood. The \(\lambda \) is considered the partial adjustment coefficient and the other \(\alpha_i \) parameters are long-run parameters.

CASE (I): With perfect foresight \((\theta = \delta = 1) \) the implications are that

\[
(3') \quad \hat{P}^e_t = \hat{P}_t,
\]

\[
(4') \quad Y^e_t = Y_t, \text{ and}
\]

\[
(5') \quad A e = \lambda + \lambda_1 \hat{P}^e + \lambda_2 Y^e + \lambda_3 \hat{P} + \lambda_4 Y + \lambda_5 \hat{P} + \lambda_6 Y + (\lambda A)_{t-1}.
\]
This model can be estimated via the search procedure over \(\lambda \) or by maximum likelihood.

CASE (II): Static expectations \((\theta = \delta = 0)\) imply that

\[
\dot{P}_t = \dot{P}_{t-1} = \ddot{P}_{t-1},
\]

\[
Y_t = Y_{t-1} = Y_{t-1}, \text{ and}
\]

\[
A e^{\lambda} + \alpha + \lambda \left(\dot{P}_t - \dot{P}_{t-1} \right) + \lambda^2 + \alpha + \lambda^3 + \alpha + \lambda^4 + \alpha + \lambda^5 + \alpha + \lambda^6 + \lambda \left(\dot{P}_{t-1} \right) + \lambda - \dot{P}_{t-1}
\]

CASE (III): Adaptive expectations \((0 \leq \theta \leq 1 \text{ and } 0 \leq \delta \leq 1)\) is considerably more complicated than for cases I and II. This is because the adaptive expectation of a variable, say \(X_t^e\), involves an infinite series which includes observed past values of \(X_t\) and unobserved past values of \(X_t\). Maddala (p. 412) shows that one can let

\[
X_t^e = Z_{1t} + CZ_{\lambda t}
\]

where \(Z_{\lambda t} = \frac{1}{1 - \lambda} \sum_{i=0}^{t-1} (1 - \lambda)^i\).

With proper substitution, equation \((5")\) can be estimated with the above suggested search procedure over \(\lambda\).

A simple but similar specification is to let \(X_t^e = \sum_{i=1}^{n} \beta_i X_{t-i}\) where \(n\) is the lag length.

Model – B: Supply Response under Rational Expectations

In this section, we present the rational expectations model first developed by Seale and Shonkwiler.\(^2\) Their model includes the rational expectation of \(P_t\) and price risk \((R_t)\) but not that of \(Y_t\) and yield risk. Essentially it allows farmers with rational expectations to make production decisions under risky conditions.

\(^2\) The model estimated in the empirical section extends the empirical model of Seale and Shonkwiler to include rational expectations of yield and yield risk. However, we present the more simple model for exposition purposes.
Let Q^s_t and Q^d_t represent quantities supplied and demanded, respectively, at time t. P_t is the price of the commodity, X_t and Z_t are exogenous variables, R_t is a measure of price risk, E_{t-1} is the expectations operator based on all information known at time $t-1$, and the $e_{it}(i=1,2)$ are random error terms assumed to have zero mean. Assumptions concerning the variances of these error terms will be made later. Accordingly, the model is

\[(7) \quad Q^s_t = a_1 E_{t-1}(P_t) + a_2 X_t + a_3 E_{t-1}(R_t) + e_{1t},\]

\[(8) \quad Q^d_t = b_1 P_t + b_2 Z_t + e_{2t}, \text{ and}\]

\[(9) \quad Q^d_t = Q^s_t.\]

The standard assumption used in rational expectations models for expectations of exogenous variables is that they are generated by low-order autoregressive processes such that

\[(10) \quad X^*_t = d_1 X_{t-1} \text{ and } u_{1t} = X_t - X^*_t\]

and

\[(11) \quad Z^*_t = d_2 Z_{t-1} \text{ and } u_{2t} = Z_t - Z^*_t,\]

where the $d_i (i=1,2)$ are parameters that may be evolving over time. The symbol * represents the expected value of exogenous variables at time $t-1$. Under the behavioral assumptions of rational expectations, producers know the structure of the model and solve for expected price accordingly (Wallis). Solving for P_t results in

\[(13) \quad P_t = (1/b_1)(a_1 E_{t-1}(P_t) + a_2 X_t - b_2 Z_t + a_3 E_{t-1}(R_t) + e_{1t} - e_{2t}).\]

taking the expectations of P_t at time $t-1$, gives

\[(14) \quad E_{t-1}(P_t) = (b_1/(b_1 - a_1))(a_2 X^*_t - b_2 Z^*_t + a_3 E_{t-1}(R_t)).\]

To solve equation (13), the entire system of equations must be solved. Given the value of $E_{t-1}(R_t)$, $E_{t-1}(P_t)$ can be solved (or vice
versa). However, in order to solve for a unique $E_{t-1}(P_t)$, it is necessary to specify more about R_t. One possibility is to define R_t as:

$$R_t = (P_t - E_{t-1}(P_t))^2,$$

and when expectations at time $t-1$ are taken, the following results:

$$E_{t-1}(R_t) = E_{t-1}(P_t - E_{t-1}(P_t))^2.$$

Using this definition, the risk variable in the model is the expected riskiness of price or the expected variability of the forecast errors for price. This construction follows Traill by defining risk as a function of deviations between expected and actual price. However, it is actually closer to the concept of expected riskiness than the variables used by either Traill or Just because it goes a step further and defines risk in terms of the expected difference between actual and expected price. Since a producer must base his decision at time $t-1$ on his expectations of price as well as riskiness, the appropriate variables are expected price and expected riskiness.

To solve for expected risk price, subtract equation (13) from equation (12), square the result and take expectations to obtain

$$E_{t-1}(P_t - E_{t-1}(P_t))^2 = (1/b_1)^2\left[a_0^2\sigma_{u_1t}^2 + b_2^2\sigma_{u_2t}^2 + \sigma_{e_1t}^2 + \sigma_{e_2t}^2 - \text{cov}(e_{1t}, e_{2t}) - a_2(b_2\text{cov}(u_{1t}, u_{2t}) + \text{cov}(u_{1t}, e_{1t}) - \text{cov}(u_{1t}, e_{2t}) + b_2(\text{cov}(u_{2t}, e_{1t}) - \text{cov}(u_{2t}, e_{2t}))\right].$$

From equation (16), the expected price risk variable as defined in equation (14) is a function of the variances and covariances of the error terms from equations (7)–(11) as well as the parameters of the structural system. As is usual, the parameters and variances of the error terms of equations (7) and (8) are assumed to be constant over time. If the variances of the error terms for the exogenous variables are also assumed to be constant and if the covariances between all error terms are assumed to equal zero (or some other constant), the risk variable will also equal some constant.
these restrictive assumptions, the risk variable will essentially be reflected in the intercept term, and the effect of risk on supply response may not be identified.

On the other hand, it seems reasonable to assume that the variances of the error terms from the forecast equations for exogenous variables are not constant but vary over time. This could be due to the fact that these stochastic processes are not stationary (Harvey). By making this assumption, the variance of expected price (the risk variable) could also vary over time. The validity of this specification can then be assessed by testing whether the structural parameter a_3 in equation (7) is significantly less than zero.

Empirical Estimation

This section is divided into three parts. In the first part, data sources for West Bengal, India are discussed. In the second part, results from a single equation acreage response model similar to equation (5) are presented and discussed. In the third part, a three-equation supply response system is developed, and results from differing expectations assumptions are presented and discussed.

Data

Single-Equation Model

The model empirically estimated for the years 1960–95 is
\[\ln A_t = \lambda_0 + \lambda_1 \ln R_t + \lambda_2 \ln F_t + \lambda_3 \ln Y_t + \lambda_5 \ln V_{pt} + \lambda_6 \ln V_{yt} + (1 - \lambda) \ln A_{t-1} \]

where \(\ln X_t \) represents the natural log of \(X_t \), \(P^*_t \) is the expected price of rice, \(P^*_F \) is the expected price of the food CPI, \(Y^*_t \) is expected yield, \(RF_t \) is rainfall measured in meters, and \(V_{pt} \) and \(V_{yt} \) are risk variables associated with rice prices and yields, respectively. Accordingly, the relative price \(P_{rt}/P_{ft} \) indicates whether the rice price has risen or fallen relative to an overall food price index.

The model was estimated with two different measures of the risk variables under assumptions of perfect foresight, static expectations, and a four-period 5lag specification. The first measure is the variance of the expected variable while the second measure is the variance of the forecast errors of the expected variable. To obtain these risk variables (moving variances), we calculate \(\sigma^2_{xt} \) as follows. Let \(???????? \) represent four time periods from \(s \) to \(t-1 \) over which the expected variable or its forecast error are estimated. The risk variable can then be obtained from

\[\sigma^2_{xt} = \sigma^2_{xt} (1 + X_t (X_t' X_t)^{-1} X_{t'}). \]

These risk variables are updated by replacing the first observation, \(s \), with \(s+1 \), the \(t-1 \) observation with \(t \), and the \(t \) observation with \(t+1 \). Estimation results are reported in Table 1.

Generally speaking, the estimates on expected relative rice price, expected rice yield are in accord with their expected priors though the parameter estimates of the coefficients of the rain fall variable are not particularly robust for any of the expectations utilized. It has to be admitted that we have not taken into account the special effects of drought years like 1965–66. Further, deviations from average rainfall might have been used as another useful proxy to capture the full effects of rainfall. All parameters on expected price are positive but small. Parameter estimates on expected yield are also significantly different from zero, but are gener-
ally positive except under static expectations with risk measured by the variance of the expected variable.

Parameter estimates for price risk were all positive. Furthermore, the long-run estimates were significant under perfect foresight and static expectations; four of the short-run parameters on price risk were significantly different from zero at 5%. Parameter estimates on the yield risk variable were negative and significant under perfect foresight and static expectations with risk measured by variance of the expected yield. These results suggest that as the variance of expected yield decreases farmers respond by increasing rice acreage. The parameters on yield risk as measured by the variance of the forecast errors are positive in the short and long-run, but are not always different statistically from zero. The partial adjustment coefficient, λ, was highest under perfect foresight (.75) and lowest under the four-period lag specification (.45) with risk measured by variance of the forecast errors. It was significantly different from zero at 5% except for the four-period lag specification with risk measured by variance of the forecast errors.

Supply Response System

The supply response system of equations estimated were

\[
\ln A_t = a_0 + a_1 \ln E_{t-1}(P_{t-1}/P_{t-1}^e) + a_2 E_{t-1}R_{xt} + a_3 \ln E_{t-1}Y_t + \\
+ a_4 E_{t-1}R_{yt} + a_5 \ln A_{t-1} + \epsilon_t
\]

(19)
\[(20) \quad \ln Y_t = b_0 + b_1 \ln P_{rt} + b_2 \ln RF + \varepsilon_t \]

\[(21) \quad \ln P_{rt} = c_0 + c_1 \ln (A_t Y_t) + c_2 \ln \varepsilon + \varepsilon_t \]

where \(R_{pt} \) and \(R_{rt} \) are price and yield risk variables measured by the variances of the forecast errors, respectively. \(I_t \) is real per capita income, and the other variables are defined above. The three equations are estimated simultaneously with maximum likelihood under three different assumptions concerning expectations: static expectations, the four-period lag specification, and rational expectations. Parameter estimates are reported in Table 2.

The results from the yield equation are interesting. Even when the yield and price risk parameters were constrained to zero, price had a positive and significant effect on rice yield. When including the risk variables, price still had a positive and significant effect under rational expectations.

Expected price in the acreage equation had positive parameters for all cases. Expected yield had a positive and significant effect on acreage response under the four-period lag specification with and without the risk variables. Its effect was also positive and significant under rational expectations, but negative and insignificant under static expectations.

Price risk parameters were positive and insignificant for rational expectations, but negative and insignificant under the other two types of expectations. Yield risk was negative (and insignificant) under rational expectations, but positive under the four-period lag specification.

The inverse demand equation indicated that per capita income had a significant and positive effect on rice price. The parameter on per capita income was significantly positive under all scenarios except for rational expectations (table 2). The parameter estimates for rational expectations were less than half those under the other scenarios. The parameters on rice quantity were positive in all cases and significantly different from zero except for the four-period lag specifications.
Conclusions

In this paper, two supply response models incorporating price and yield risk variables were presented and estimated; one was a single-equation model, and the other was a system of three equations. The first model was estimated assuming perfect foresight, static expectations, and expectations based on four-period lag specification. The second model was developed and estimated utilizing rational expectations but was also estimated for comparative purposes with static expectations and the four-period lag specification. Both models were fit to data of Bengal, India, 1960–1995.

The results from the single-equation model were in accord with prior expectation. Acreage response to price changes were positive albeit small but significant. Statistical evidence that price risk or expected yield affected acreage response was supported albeit mildly. However, evidence suggests that decreases (increases) in the variability of yield would increase (decrease) rice acreage.

The rational expectations model provided useful information than the single-equation model. For example, both yield and acreage were found to be positively and significantly affected by rice price but the acreage response is not always strong. This suggests that Bengal farmers responded to increases in rice price by increasing yield per acre more than through acreage increases. Given the constraints to placing additional acres into production in land-scarce (relative to labor) India plus the bias in the "Green Revolution" to words increasing yield through inputs, new technology, and new seed varieties, this implication seems plausible. Further, this is information that can not be provided by a simple, single-equation acreage model.

The hypothesis that price and yield risks (as measured as the variance of forecast errors) affect rice acreage response in Bengal was supported. The same result was found in the single-equation model with risk measured in terms of forecast errors.
In addition to judging the newly developed model by its empirical results for one province in India, one might also ask the question whether the model is superior to previous models theoretically and whether or not the estimation of the admittedly complex model is tractable. In terms of expectations, the rationality assumption is clearly preferable theoretically to the rather ad hoc expectations as modeled by perfect foresight, static expectations, a several-period lag structure, or the true adaptive expectations structure. In terms of tractibility, the model was estimable using FIML (full information maximum likelihood) from the statistical package, Time-series Processor (TSP) for an annual sample of only 40 observations; convergence was not a problem. Indeed, the smallness of observations or lack of degrees of freedom surely explain in part the less than robust parameter estimates on several of the model's variables. Also, the same reason [i.e. limited sample size] prevented us from undertaking co-integration analysis of the available data. Still, the simpler single-equation model yielded no more robust estimates than the rational expectations model.

References

Balakrishnan, P. (1991), Pricing and Inflation in India, Oxford University Press, Delhi, India.

Fertilizer Association of India, Fertilizer Statistics, New Delhi (various years).

Fertilizer Association of India, Fertilizer Review, New Delhi (various months).

Government of India, Ministry of Food and Agriculture. Estimates of Area and Production of Principal Crops in India 1954–89, New Delhi, India.

Government of India, Ministry of Agriculture. The Agricultural Situation in India, New Delhi, (various months).

