Tourists’ Satisfaction and Revisiting: an investigation of causality effects

Kompotis Apostolos, Associate Professor
Papanastasiou Ioannis, Assistant Professor
Vassiliadis Christos, Lecturer
Voyatzis Alexandros, Associate Professor
University of Macedonia

Abstract

In this paper, a switching regime model with known sample separation is applied to Greek data, to investigate causality linkages between tourists’ satisfaction and their willingness for revisiting. The empirical evidence shows the existence of these causality effects. Moreover, it shows that the willingness for revisiting crucially depends on many qualitative aspects of tourist services and accommodation.

Keywords:
Switching regime models, causality, tourism.
JEL classification: C24, C25.

1. Introduction

Indisputably, tourism is an important factor of economic development for many countries. Thus, tourist problems have been analyzed in many stud-
ies. These problems are directly related to the particular characteristics of the tourism areas. Generally, tourist areas are classified into three broad categories according to their development stage. The first category includes those areas where tourism plays a dominant role in their economic base. Then, these areas are considered to be in the mature stage of their tourist development. Thus, the main problem for these areas is, at least, the maintenance of the number of nights spent by tourists through the upgrading of tourist services. The second category includes areas where tourism plays an important but not a dominant role in their economic base. The tourism industry in these areas is in the developing stage meaning that these areas have some tourist infrastructure. Then, many people agree that the best tourist-developing strategy for these areas is the enrichment of tourist products with new ones, like conferences, cultural, archeological and religious tourism etc. Of course an increase in the number of tourist products requires the availability of the necessary human, technological and material resources. Finally, in the third category belong areas where tourism has a minor impact in their economic base. These areas are now entering the tourism industry. Main strategies for tourists’ attraction, in these areas, are considered to be the production of authentic domestic products, the preservation of the traditional way of living and the exploitation of the unique natural beauty of their environments.

Regardless areas’ developing stage, key issue in any tourist-developing strategy is the discovering of the factors underlying the satisfaction of visitors (see Vukonic, 1997, Ryon, 1997, Sirakaya, Mohellan and Uysal, 1996, Buhalis D., and Fletcher J., 1995).

Therefore, in any tourist policy it is of vital importance the knowledge of the factors affecting the degree of satisfaction of foreign tourists. In this paper, using data based on a questionnaire, we examine whether the degree of tourists’ satisfaction is affected from factors which have been aggregated into four broad categories namely physical and technical characteristics of the areas as well as services and other activities offered by the particular destination places. Furthermore, an econometric model drawing from the switching regime literature is estimated to test causality effects between tourists’ satisfaction and their willingness to revisit destination areas.

2. Methodology

The theoretical model draws for the switching regime literature. Letting the subscript g denote the first regime under which the variable Y operates
and \(ng \) denote the complementary regime, then each observation of the variable \(Y \) may be characterized as:

\[
Y_i = X'_i g \beta_g + \varepsilon_{i,g} \quad \text{if observation } i \text{ belongs to } g \text{ regime}
\]

\[
(1)
\]

\[
= X'_{i,ng} \beta_{ng} + \varepsilon_{i,ng} \quad \text{otherwise}
\]

\[
(2)
\]

where \(X \) and \(\beta \) are appropriately and conformably dimensioned vectors of variables and parameters corresponding to the structural description of the endogenous variable \(Y \) under the two regimes.

To obtain consistent estimates a two-stage estimation procedure is utilized. The structure of the two-stage technique is characterized as:

\[
Y_i = X'_i g \beta_g + \varepsilon_{i,g} \quad \text{if } \gamma'z_i \geq e_i
\]

\[
(3)
\]

\[
= X'_{i,ng} \beta_{ng} + \varepsilon_{i,ng} \quad \text{otherwise}
\]

\[
(4)
\]

where \(\gamma'z_i \) is a stochastic criterion function of variables \(z_i \) and parameters \(\gamma \) determining whether or not observation \(i \) belongs to regime \(g \), so that an indicator function \("I_i" \) may be posited such that:

\[
I_i = 1 \quad \text{if } \gamma'z_i \geq e_i \quad \text{and } i \text{ belongs to } g \text{ regime}
\]
\[
\begin{bmatrix}
\sigma^2_g & \sigma_{g,ng} & \sigma_{g,e} \\
\sigma^2_{ng} & \sigma_{ng,e} & 1
\end{bmatrix}
\]

It follows that
\[
E(e_{i,g} | e_i \leq \gamma'z_i) = -\sigma_{g,e} \frac{f(\gamma'z_i)}{F(\gamma'z_i)} = -\sigma_{g,e} w_{i,g}
\]

and in a similar way:
\[
E(e_{i,ng} | e_i \geq \gamma'z_i) = \sigma_{ng,e} \frac{f(\gamma'z_i)}{1 - F(\gamma'z_i)} = \sigma_{ng,e} w_{i,ng}
\]

where \(f() \) and \(F() \) are respectively the standard normal destiny function and its cumulaat evaluated as its arguments (see Maddala (1983) p. 224). Thus equations (3) and (4) may be written as:

\[
Y_i = Z_{i,lg}' \beta_g - \sigma_{g,e} w_{i,g} + u_{i,g} \quad \text{for} \quad I_i = 1
\]

\[(5)\]

\[
= Z_{i,ng}' \beta_{ng} + \sigma_{ng,e} w_{i,ng} + u_{i,ng} \quad \text{otherwise}
\]

\[(6)\]
where the residuals u are implicitly related to the residuals e in equations (3) and (4).

The two-stage method utilizes probit analysis in the first stage and a least squares procedure in the second stage. Specifically, in the first stage probit estimates of γ permit establishing values for w_g and w_{ng} for each i via evaluation of the functions f and F. In the second stage, the equations (5) and (6) are estimated by weighted least squares since residuals u are not necessarily homoskedastic. This procedure provides consistent estimates of the parameters. It should be pointed out that if there is no correlation between e and e_g, e_{ng} and the variable Y does not appear in the vector z, the switching process may be thought of as exogenous. Therefore, if the estimates of $\sigma_{e,e}$ and $\sigma_{e_{ng},e}$ are not significantly different than zero this implies that Y does not cause z and thus z may be interpreted as independent of Y. Consequently the individual regimes may be estimated as two independent regression equations provided there is no restrictions across equations that need to be taken into account.

3. Data

We applied our model to Greek data. Specifically, in our model the first regime refers to those tourists who have expressed their preferences for re-visiting the same place or any place in North Greece or any other place in Greece.

The data set is based on a questionnaire which had been distributed to almost 1900 tourists visiting northern Greece. The variables included in the questionnaire have been aggregated into four broad categories: physical and technical variables, services and activities, by taking the average of the responses. Analytical description of every variable and its measurement is given in Table 1.

<table>
<thead>
<tr>
<th>Aggregate Variable</th>
<th>Variables included in the questionnaire</th>
<th>Measurement</th>
</tr>
</thead>
<tbody>
<tr>
<td>Satisfaction</td>
<td></td>
<td>0 = not satisfied</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1 = satisfied</td>
</tr>
</tbody>
</table>
| Physical Factor | Revisiting | 1 = Yes
2 = Maybe
3 = No |
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Environment, Climate,</td>
<td>0 = I don’t know</td>
<td></td>
</tr>
<tr>
<td>Weather</td>
<td>1 = Very good</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2 = Good</td>
<td></td>
</tr>
<tr>
<td></td>
<td>3 = Moderate</td>
<td></td>
</tr>
<tr>
<td></td>
<td>4 = Bad</td>
<td></td>
</tr>
<tr>
<td>Technical Factor</td>
<td>Room accommodation, Quality of</td>
<td>Same as above</td>
</tr>
<tr>
<td></td>
<td>athletic places, Walking roads, Conferences’ centers</td>
<td></td>
</tr>
<tr>
<td>Services</td>
<td>Quality of services and food, Hospitality, Relation</td>
<td>Same as above</td>
</tr>
<tr>
<td></td>
<td>between price and services, Queueing in banks, Cleaning, Babysitting</td>
<td></td>
</tr>
<tr>
<td>Activities</td>
<td>Possibility for exercises, Activities, Entertainment, Hobbies and Aesthetics</td>
<td>Same as above</td>
</tr>
</tbody>
</table>

4. Empirical Results

The estimates of the empirical models related to different regimes are presented below (heteroscedasticity consistent standard errors are in parentheses):

Model 1: Revisiting the same destination place
Regime 1: Revisiting (I_i = 1)

\[
\begin{align*}
Y &= -0.250 \text{ PH} + 0.189 \text{ SR} + 0.102 \text{ TH} - 0.061 \text{ AC} + 1.419 \text{ W1} \\
&= (0.029) (0.029) (0.024) (0.011) (0.061)
\end{align*}
\]

Regime 2: No Revisiting (I_i = 0)

\[
\begin{align*}
Y &= 0.156 \text{ PH} - 0.562 \text{ SR} - 0.215 \text{ TH} + 0.111 \text{ AC} + 1.797 \text{ W2} \\
&= (0.040) (0.075) (0.048) (0.034) (0.117)
\end{align*}
\]

The probit estimation of the revisiting function yields:

\[
\begin{align*}
I &= -0.237 \text{ PH} + 0.263 \text{ SR} + 0.163 \text{ TH} - 0.095 \text{ AC} \\
&= (0.075) (0.117) (0.083) (0.066)
\end{align*}
\]
Model II: Revisiting other place in Northern Greece
Regime 1: Revisiting \((I_1 = 1)\)
\[Y = -0.326 \text{ PH} + 0.238 \text{ SR} + 0.151 \text{ TH} - 0.081 \text{ AC} + 1.569 \text{ W1} \]
\((0.039) (0.038) (0.029) (0.024) (0.072)\)
Regime 2: No Revisiting \((I_1 = 0)\)
\[Y = 0.262 \text{ PH} - 0.768 \text{ SR} - 0.296 \text{ TH} + 0.108 \text{ AC} + 1.872 \text{ W2} \]
\((0.052) (0.102) (0.056) (0.041) (0.125)\)
Probit estimates of the Revisiting function:
\[I = -0.326 \text{ PH} + 0.458 \text{ SR} + 0.154 \text{ TH} - 0.081 \text{ AC} \]
\((0.081) (0.126) (0.087) (0.069)\)

Model III: Revisiting other place in Greece
Regime 1: Revisiting \((I=1)\)
\[Y = -0.151 \text{ PH} + 0.146 \text{ SR} + 0.168 \text{ TH} + 0.006 \text{ AC} + 1.823 \text{ W1} \]
\((0.030) (0.037) (0.026) (0.019) (0.068)\)
Regime 2: No Revisiting \((I=0)\)
\[Y = -0.008 \text{ PH} + 0.695 \text{ SR} - 0.442 \text{ TH} + 0.007 \text{ AC} + 1.815 \text{ W2} \]
\((0.060) (0.144) (0.083) (0.061) (0.215)\)
The probit estimates of the revisiting function are:
\[I = -0.104 \text{ PH} + 0.392 \text{ SR} + 0.210 \text{ TH} + 0.036 \text{ AC} \]
\((0.089) (0.138) (0.098) (0.077)\)

From the empirical results we conclude the following:

1. Tourists who have expressed their preferences to revisit the same place or another area in northern Greece, show similar behavior regarding the variables affecting their satisfaction. That is, their satisfaction depends positively on the physical variable and the activities offered by the destination place.

2. Tourists willing to visit other places in Greece – except northern Greece – indicate that their satisfaction is positively linked to the physical characteristics of the destination.

3. For those tourists who did not express any preference for revisiting, their satisfaction their satisfaction was found to depend on the services and the technical characteristics of the tourist areas.

4. In all cases there is a clear evidence of causality effect from satisfaction to decision for revisiting a tourist place.

Therefore, the satisfaction of the tourists in Greece, is affected by different variables depending on whether they are likely to revisit the destination place or not. The empirical results revealed that tourists willing to revisit the
destination area derive satisfaction from physical characteristics and the various activities existing in these areas. On the contrary the satisfaction of tourists unwilling to revisit the same place is mainly related to the services and the technical characteristics of these places. This information based on the empirical evidence is quite important especially for those interested in clientele-maintenance strategies in tourist marketing.

5. **Summary**

In this paper we presented a general framework based on the switching regime literature to investigate first, the existence of causality effects between tourists’ satisfaction and their decision for revisiting and second, the factors affecting tourists’ satisfaction. Using Greek data, the empirical estimation of the model showed the linkage between tourists’ satisfaction and their willingness to come back. Moreover this satisfaction depends on whether visitors are planning to come back or not. Specifically, tourists decided to come back seem to derive satisfaction particularly from natural resources. However, for those tourists decided not to come back their satisfaction is mainly related to quality of services and the availability of accommodations (technical characteristics).

References

