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Abstract: 

 
Understanding the evolution of volatility on the financial markets is 

essential for the comprehension and for the analysis of risk. This paper regards 
the topic of persistence of volatility in the exchange rates for four Central and 
Eastern European countries: Czech Republic, Hungary, Poland, and Romania. 
Persistence in volatility shows how quickly financial markets forget large 
volatility shocks. The persistence of volatility is addressed as the presence of 
long-term memory in the second order moment of returns and in absolute returns. 
The main feature of a long-memory process is that its autocorrelation function 
decays slower than that of a short memory process, but faster than that of an 
integrated one. The paper also concerns the implications on risk assessment of 
detecting long-term memory in the volatility of the exchange rate. 

 
Keywords: long memory, volatility, GARCH models. 
 
JEL Classification: C14, D81, G17 
 
 
1. Introduction 

 
The human decision process design has a fundamental impact on the 

financial markets. The ways in which the human decision process deviates from 
perfect rationality generates phenomena intriguing the academic financial 
literature. 

The affluence of empiric evidence regarding the asymmetric information 
perception and processing contradicts an efficient pricing framework congruent 
with a market composed integrally by identical traders concerning the inferring 
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ability, simultaneous perception and identical resources. The human investors are 
optimal myopic strategist (Kauffman, 1994). Myopia in economic contexts is 
defined as the result of the heuristic decision process that incorporates implicitly a 
feedback mechanism allowing learning from historical experience. The heavy 
dependence on historical outcomes causes investors to underestimate the 
probability of future outcomes in making decisions. 

The time and financial restrictions applied to the real decision process 
justifies heuristic and inexact techniques, providing an explanation for the auto-
afine and the long term memory processes in the financial time series. The 
presence of long-memory components in the moments of asset returns has 
important implications for many of the paradigms used in modern financial 
economics (Lo, 1991). 

The finding of long-memory in the volatility of the financial time series 
suggests the development of new methods of forecasting, portfolio optimization, 
risk assessing and aggregation. 

Research on the long-memory processes arose from the examination of 
data in the physical sciences. Hurst (1951) found persistence in streamflow data, 
observing that long-memory processes can generate non-periodical cyclical 
pattern. 

Persistence in volatility shows how quickly financial markets forget large 
volatility shocks. The main feature of a long-memory process is that its 
autocorrelation function decays slower than that of a short memory ( )0I  s 
process, but faster than that of an integrated one. 

To account for a discrete-time model that exhibits hyperbolic decay of its 
autocorrelation function, Granger and Joyeux (1980) and Hosking (1981) 
introduce independently the fractional integrated autoregressive moving average 
model (ARFIMA). 

The importance of long-memory for assets returns was first discussed in 
Mandelbrot (1971). Mandelbrot shows that in the presence of long-memory 
perfect arbitraging is not possible, providing a table which relates the Hurst 
exponent values, the Sharpe Ratios, and the number of transactions needed to 
obtain profits under option strategies. Greene and Fielitz (1977) use the rescaled 
range statistic (R/S) to address the long-memory hypothesis for stock returns. 
Their analysis was conducted on the daily returns for 200 common stocks listed in 
the New York Stock Exchange and concluded that long-term dependence 
characterizes a significant percentage of the sample. Aydogan and Booth (1988) 
suggest that the Greene and Fielitz (1977) results might be corrupted by serial 
dependency and non-stationarities. Lo (1991) performed a refinement of the R/S 
method on the daily and monthly stock returns indexes of Center for Research in 
Security Prices over several time periods and, contrary to previous findings, found 
no evidence of long-range dependence in any of the indexes over any sample 
period or sub-period once short-range dependence was taken into account. 
Barkoulas, Labys, and Onochie (1997) used the classical R/S analysis to 
reevaluate the memory of future returns and found persistent long-memory in a 
significant group of future contracts. 
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The analysis of long-term memory in the second order moment of assets 
returns follows the analysis of conditional variance model seminal paper of Engle 
(1982), regarding autoregressive conditional heteroskedasticity (ARCH) models. 
The Engle’s original work was extended by Boolerslev (1986) to generalized 
ARCH (GARCH) models. Engle and Boolerslev (1986) introduced integrated 
GARCH (IGARCH), allowing for high-frequency stock market data to display 
persistent volatility. Crato and de Lima (1994) applied a modified version of R/S 
statistic and GPH statistic to the squared residuals of various filtered U.S. stock 
returns indexes. Ding, Granger and Engle (1993) draw attention to the presence of 
long-memory in the higher moments of return series. 

Two classes of models have been proposed to capture the slow decay of 
the autocorrelation function of volatility series. The natural extension of the 
ARCH, allowing a hyperbolic rate of decay for lagged squared innovations were 
introduced in the form of fractionally integrated GARCH (FIGARCH) and 
fractionally integrated exponential GARCH (FIEGARCH) models of Baillie, 
Bollerslev and Mikkelsen (1993) and Bollerslev and Mikkelsen (1993). In their 
application of the FIGARCH model to the exchange rate between U.S. dollars and 
the German mark, the hypothesis of IGARCH behavior against FIGARCH 
behavior is rejected. Similar results are obtained by Bollerslev and Mikkelsen 
(1993) in their application of the FIEGARCH model to daily returns on the 
Standard and Poor’s 500 stock index. The second class of models that allows 
long-memory in volatilities is the stochastic volatility class of models of Breidt, 
Crato and de Lima (1994). Caporin (2002a) extends the analysis on the estimation 
and identification problems with a FIGARCH specification for the conditional 
variance. Caporin (2002b) employs a risk oriented approach. 

Kirman and Teyssiere (2000) construct a microeconomic behavioral model 
with interacting agents that can replicate the empirical long memory properties of 
the two first conditional moments of financial time series. The essence of the 
model is that the second assumption of rationality – mutually consistence – no 
longer holds; the forecasts and the desired trades of agents are influenced by those 
of other participants, affecting the structure of the assets price dynamics. The 
series of squared returns display long-memory, while returns are uncorrelated. 
The basic foundation of the model developed in Kirman and Teyssiere (2000) is 
the existence of two groups of agents, who differ by their price forecast: 
fundamentalists and chartists. The differentiating feature of this model is that 
individuals change from a category to another. The variable size of the two groups 
has consequences for emergent market behavior. The model, although of a 
sequential nature, is an equilibrium one. 

LeBaron (2007) shows that the long memory persistence in trading 
volume, volatility, and order signs can be a consequence of the imitation across 
trading behavior. 

Understanding the evolution of volatility on the financial markets is 
essential for the comprehension and for the analysis of risk. Additional terms 
concerning risk and incertitude necessitate the development of econometric 
techniques to capture the empirical regularities, as well as the idiosyncrasies of 
financial markets. 
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We investigate the persistence of volatility in the exchange rates for four 
Central and Eastern European countries: Czech Republic, Hungary, Poland, and 
Romania. The persistence of volatility is addressed as the presence of long-term 
memory in the second order moment and in absolute returns. The paper also 
concerns the implications on risk assessment of detecting long-term memory in 
the volatility of the exchange rate. 

The paper is organized in 4 sections. The 2nd section reviews the models 
of long-term dependence; the 3rd section presents the methods used to detect and 
to estimate long-memory characteristics; the final section outlines the empirical 
results and concludes. 

 
2. Modelling long-memory in returns and volatility 

 
The long-term dependence can be translated through the persistent 

influence of distant shocks on a series level. The standard characterization of 
long-term dependence comprises the autocorrelation function. A process ( )tX  

presents long-term memory if τ∀  ( ) ∞=∑
=

∞→

T

T 1

lim
τ

τρ , where ( )τρ  is the 

autocorrelation function at rank τ . A time series is denominated as integrated of 

order d , ( )dI , if ( ) ∞=∑
=

∞→

T

XT 1
lim

τ

τρ , τ∀  and d  is the minimum positive number 

such as ( ) ∞<∑
=

∞→

T

ZT 1

lim
τ

τρ , τ∀ , with ( ) t
d

t XBZ −= 1 . The B  operator is defined 

as att
a XXB −= . The d  parameter quantifies the memory stock of the time series. 

The autocorrelation function for a long-memory process decays hyperbolically. 
The ARFIMA specification represents a flexible and an efficient way to 

model the short- and long-term behavior of time series. The ARFIMA 
specification was introduced by Granger and Joyeux (1980), and Hosking (1981). 
These stochastic processes are not strong-mixing, and have autocorrelation 
functions that decay at much slower rates than those of weakly dependent 
processes (Lo, 1991). 

A stochastic process ( )tX  follows an ARFIMA process of p , d  and q  
parameters, if 

 
( )( ) ( ) tt

d BXBB εθφ =−1 .                   (2.1) 
 
The lag polynomials ( )Bφ  and ( )Bθ  are defined by 
 
( ) p

pBBB φφφ −−−= ...1 1 ,                  (2.2) 
 
( ) q

qBBB θθθ −−−= ...1 1 ,               (2.3) 
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and tε  is a white noise process. Granger and Joyeux (1980) and Hosking (1981) 

show that when the quantity ( )dB−1  is extended to non-integer powers of d , the 
result is a well-defined time series. 

The formulation of the fractional difference operator can be parameterized 
using the MacLaurin series. 

( ) ( )
( ) ( )

k

k

d B
kd
dkB ∑

∞

= +Γ−Γ
−Γ

=−
0 1

1 ,             (2.4) 

 
where ( )⋅Γ  is the Euler Gamma function. The Euler Gamma function is a method 
to generalize the usual factorial function to non-integer arguments. 

The order of fractional integration governs the effect and the permanence 
of the shocks on the stationarity or the non-stationarity of the process. Hosking 
(1981) show that ( )tX  is stationary and invertible for ( )21,21−∈d , and exhibits 
a unique kind of dependence that is positive or negative depending on the sign of 
d . 

The ARCH class of models derives from Engle (1982). The ARCH models 
are capable of surprising stock market features as leptokurtic distributions, 
volatility clustering, leverage effects, non-trading periods, predictable events, 
volatility and serial correlation dependence, and common behavior in volatilities. 
The ARCH models segregate the second order conditioned and unconditioned 
moments; the conditional covariances depending non-trivially on previous states. 

Similar to Engle (1982), an ARCH process is defined as 
 

ttt Zσε = ,                 (2.5) 
 

where ( )tZ  is an independent, identically distributed process, with [ ] 0=tZE  and 
[ ] 1=tZVar . The variable 2

tσ  is a positive, 1−tF -measurable function, where 1−tF  is 
the sigma-algebra generated by ( ),..., 21 −− tt ZZ ; 2

tσ  is the conditional variance of 
the process. 

Following Bollerslev (1986), in a GARCH (p, q) specification the variance 
is defined by 

 
( ) ( ) 222

ttt BB σβεαωσ ++= ,                                                  (2.6) 
 

where ( )Bα  and ( )Bβ  are lag polynomials similar to (2.2) and (2.3). 
The GARCH process may be rewritten as the ARMA (m, p) process 
 

( ) ( )[ ] ( )[ ] tt BBB υβωεβα −+=−− 11 2 ,                                                   (2.6’) 
 

where 22
ttt σευ −= , and { }qpm ,max= . 
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In a stationary ARCH or GARCH model, memory decays exponentially. 
For example, if ( )tε  is ARCH (1), the autocorrelation function is ( ) ττρ ct= , 
implying an unrealistically fast decay. 

To model a very slow decay in the sample autocorrelation function of 
squared returns measure of volatility, the GARCH model was extended to allow 
an approximate unit root in ( ) ( )BB βα −−1 . Bollerslev and Engle (1986) defined 
the IGARCH (p, q) process as 

 
( ) ( ) ( )[ ] tt LBB υβωεϕ −+=− 11 2 ,                                                             (2.7) 

where the lag polynomial ( )Bϕ  is of order 1−m . 
To model the long-memory in the volatility of financial instruments 

returns, Baillie, Bollerslev, and Mikkelsen (1993) extended the IGARCH 
specification by a natural parallel with ARFIMA processes. The FIGARCH (p, d, 
m) process is defined as 

( ) ( ) ( )[ ] tt
d BBB υβωεφ −+=− 11 2 .                                                           (2.8) 

 
In a FIGARCH model the impact of the innovation lies between 

exponential decaying and infinite persistence. In stationary long memory models 
for volatility, the autocorrelations of ( )2

tε  obey a power law, ( ) 12 −≈ dττρ . 
 

3. Detecting long-term memory and estimating the fractional difference 
parameter 

 
We shall review in this section several methods employed in the detection 

of long-memory type of persistence and in estimating its parameters: the unit roots 
tests of Dickey-Fuller and Kwiatkowski, Phillips, Schmidt and Shin; the modified 
R/S statistic of Lo; the spectral regression method of Geweke and Porter-Hudak; 
and the local Whittle estimator. A gross categorization would divide the pre-
mentioned techniques based on their appurtenance to time domain analysis and, 
respectively, to spectral domain analysis. 

 
3.1 Unit roots method 

 
Due to the fact that the standard Augmented Dickey-Fuller (ADF) tests 

tend to have low power against the alternative hypothesis of fractional integration, 
complementary unit root test ADF and Kwiatkowski, Phillips, Schmidt and Shin 
(1992) (KPSS) can be used to detect long memory in the return series or in the 
volatility series. The combined result of ADF and KPSS can be synthesized as 
follows. 

i. The rejection of ADF and the impossibility of rejecting KPSS provides the 
evidence of a wide stationary process; the series is ( )0I . 

ii. The impossibility of rejecting ADF and the rejection of KPSS provides the 
evidence of a process integrated of order 1. 
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iii. The joined impossibility of rejecting ADF and KPSS shows an 
informational insufficiency of the data generating process to the lower 
frequencies. 

iv. The joined rejection of ADF and KPSS indicates the insufficiency of a 
representation either ( )1I  or ( )0I  and the necessity of a fractional 
alternative. 
Charemza and Syczewska (1997) suggests that, where the ADF and KPSS 

statistics are jointly used, the conventional critical values for those tests should be 
replaced by symmetric critical power values, which corresponds to the probability 
of type 1 error for the ADF test and power of the KPSS test in the case both 
cumulative marginal distributions are equal. 

 
3.2 R/S statistic 

 
R/S is the short for range over standard deviation. The R/S was developed 

by Harold Edwin Hurst and is the range of partial sums of deviations of a time 
series from its mean, rescaled by its standard deviation. The classical rescaled 
range statistic ( )TQ  is defined as 

( ) ( )
( )TS
TRTQ ˆ= ,                                                                                          (3.1) 

 

( ) [ ] [ ]
⎭
⎬
⎫

⎩
⎨
⎧

−−
⎭
⎬
⎫

⎩
⎨
⎧

−= ∑∑
=

≤≤
=

≤≤

T

j
jTj

T

j
jTj

XEXXEXTR
1010

minmax ,                              (3.2) 

and ( )TŜ  is a standard deviation estimator. 
 

The R/S statistic can detect long-range dependence in highly non-
Gaussian, skewed and leptokurtic time series, is almost-sure convergence for 
stochastic processes with infinite variances, and can detect non-periodic cycles, 
cycles with period equal to or greater than the sample period. The distribution for 
the classic RS statistic is unknown and it can be contaminated by the short 
memory components. 

The limit of the ratio ( ) TTQ loglog  is denoted by H  and is called the 
“Hurst” coefficient. The fractionally difference parameter is dH =− 21 . 

Lo (1991) modifies the R/S statistic such as its statistic behavior is 
invariant over a general class of short memory processes, but deviates in the case 
of long memory processes. The modified R/S statistic differs from the classical 
R/S by the denominator. Lo (1991) employes a long-memory consistent standard 
deviation estimator using Newey-West weights. 

For ARMA processes ( ) ( )MTSTR ,ˆ  converges to HT , with 21=H . A 
natural estimation for H , given a T  length series is, therefore, 

( ) ( )[ ] ( )TMTSTRH log,ˆlogˆ = .                                                             (3.4) 
 
The critical values for the R/S statistic are provided in Lo (1991). 
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3.3 Spectral regression estimator 
 
Geweke and Porter-Hudak (1983) introduced for the fractional integration 

order an estimate based on the spectral representation of a stationary stochastic 
process. The spectral density function of the ( )dI  process satisfies the equation 

 
( ) ( )[ ] ( )ωωω Y

d
X ff 22/sin2 −= ,                                                                (3.5) 

 
where ( )ωYf  is the spectral density function for the process ( ) t

d
t XBY −= 1 . 

GPH is a semiparametric procedure estimating the parameter d  through 
the least squares applied to a transformation of (3.5) and assuming that 

( ) ( )[ ]0ln YjY ff ω  becomes negligible. 
Geweke and Porter-Hudak (1983) argue that the resulting estimate of d  

could capture the long-memory behavior without being contaminated by the short-
memory behavior of the process. This argument is asymptotically correct if, 
besides truncation of the higher periodograma frequencies, an additional 
truncation of the very first ordinates is performed. The usual t -test of the 
hypothesis that 0=d  against 0≠d  is a test of the null hypothesis of short-
memory against long-memory alternatives. The small sample properties of GPH 
test can be very sensitive to large autoregressive and moving average effects. 

 
3.4 Spectral regression estimator 

 
Sowell (1992) suggests to estimate the parameters of an ARFIMA (p, d, q) 

process with the method of maximum likelihood. The log-likelihood function is 

( )[ ] ( ) ( ) [ ] ( )[ ]EXXEXXTXEXLT −Ω′−−Ω−−= − ββπβ 1

2
1ln

2
12ln

2
,; ,       (3.6) 

where ( )′= TXXX ,,1 Κ , ( ) jiij −==Ω γω , and β  is a vector of parameters 
including d , ARMA coefficients and unconditional variance. Based on the 
approximation proposed by Whittle, maximizing the log-likelihood function is 
equivalent to minimizing the (negative) spectral likelihood function 

( ) ( )
( ) ( )[ ]∑

⎥⎦
⎤

⎢⎣
⎡

= ⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

+=
2

1
;ln

;

T

j
jX

jX

jW
T f

f
I

L βω
βω

ω
β .                                                          (3.7) 

 
The resulting minimizer is known as the Whittle estimator. Although it is 

efficient to the exact MLE, it requires a priori specification of the spectral density 
function ( )βω,f . To overcome this difficulty, H.R. Künsch and P.M. Robinson 
suggested a local Whittle estimator, which does not impose the gaussian 
assumption nor does it require a correct specification of the spectral density. The 
method is asymptotically more efficient than the Whittle estimator. 

There are cases, when the tests concerned in detecting long-memory and 
estimating its parameters spuriously detect evidence on long-memory. Thus, a 
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pseudo-long-memory behavior can be generated by the sum of AR (1) processes, 
with coefficients drawn randomly from a suitable distribution and increasing 
number of terms, by the misspecification of conditional heteroskedasticity 
models, or by the presence of nonstationarities. The switching ARCH data can 
replicate the combined contrasting behavior: when applied to the levels, the tests 
indicate no evidence of long-memory, but when applied to the squares of the 
series the tests present evidence of long-memory. 

 
4. Empirical results 

 
This section is oriented towards detection of long-memory feature in the 

returns and in different specifications for volatility calculated for the exchange 
rates versus EUR of the Hungarian forint (HUF), Czech koruna (CZK), Polish 
Zloty (PLN) and Romanian Leu (RON). We analyzed daily data covering the 
interval January 1998 – December 2007. 

Table 1 presents the results of the unit root tests. As one can observe, the 
null hypothesis of unit root is rejected by ADF for all the series, implying a degree 
of integration lower than one. The KPSS test provides more clear results, 
indicating a zero degree of integration for the returns of CZK, HUF, and PLN, for 
the squared returns of HUF and of RON. The rejection of the null hypothesis by 
the KPSS indicates a fractional degree of integration for all the series in absolute 
value, and for the squares for CZK and PLN. 

The findings of the ADF and KPSS tests are supported by the estimated 
fractional difference parameter through the GPH method. The results are 
displayed in Table 2. The estimated values of d  suggest that absolute returns 
show a degree of persistence greater than that of the squared returns. 

To asses the ability of different conditional heteroskedasticity models to 
represent the studied financial series we estimated for each individual security 
GARCH (1, 1), FIGARCH(1, d, 1), and IGARCH(1, 1) models. We implemented 
different conditional mean specifications to account for the low order correlation. 
Monte Carlo simulations show that AIC and SIC segregate effectively GARCH 
and FIGARCH alternatives. We exploited the opportunity offered by Ox Garch23 
package to consider different error distribution: Gauss, Student-t, General Error 
Distribution, and Skewed Student-t. 

The sum of GARCH 1α  and 1β  estimates are close to one for the majority 
of series, as a sign of persistence in volatility. The fractional differencing 
parameter is estimated as significantly different form zero; the estimated values 
being similar with the results presented in Table 2. The 1β  estimate falls 
considerably from GARCH to FIGARCH. The analysis of AIC and SIC implies 
that FIGARCH models fit the studied data series slightly better than GARCH, or 
IGARCH models. 

Although the robustness of the usual long-memory procedures remains yet 
to be addressed, the jointly results of tests performed indicate evidence for the fact 
that volatility of analyzed exchange rates returns displays long-memory. The 
results also indicate that, with the exception of the RON exchange rate, the returns 
describe mainly short-term processes. 
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A crossing observation over the similar results of the performed tests 
induces the following incremental ranking, in terms of autocorrelation structure: 
returns, squared returns, absolute returns. The previous autocorrelation structure 
ranking suggests the suitability of the absolute returns volatility design. 

A further development in the area would comprise fractional cointegration 
analysis to detect a usable formulation between return and the respective volatility 
specification. 

The presence of long-memory in the volatility of financial assets is 
congruent with the persistence of shocks in returns, indicating that new models for 
risk assessment are required. 
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APPENDIX 
 

Table 1: Unit root tests 
 

CZK HUF PLN RON 
Ret. Abs. Sq. Ret. Abs. Sq. Ret. Abs. Sq. Ret. Abs. Sq. 

Augmented Dickey-Fuller 
-54.67 -2.92 -13.02 -51.30 -4.91 -15.38 -52.29 -5.02 -10.5 -39.31 -9.92 -15.8 

Kwiatkowski, Phillips, Schmidt and Shin 
0.04 2.08 2.17 0.12 1.41 0.55 0.14 1.55 1.24 1.91 2.5 0.71 

Source: Own calculations. Ret. stands for returns, Abs. for absolute value, and Sq. for 
conditional volatility. Shaded areas denote significance at 1%. Critical values for KPSS 

are 0,74 for 1%, 0,46 for 5% and 0,38 for 10%. 
 

Table 2: GPH estimates for the fractional integration parameter 
 

CZK HUF PLN RON 
Ret. Abs. Sq. Ret. Abs. Sq. Ret. Abs. Sq. Ret. Abs. Sq. 

-0.13 
(0.13) 

0.59 
(0.09) 

0.56 
(0.09) 

-0.0 
(0.11) 

0.53 
(0.1) 

0.32 
(0.1) 

0.02 
(0.11) 

0.36 
(0.1) 

0.19 
(0.09)

0.27 
(0.15) 

0.31 
(0.09) 

0.09 
(0.04)

Source: Own calculations. Ret. stands for returns, Abs. for absolute value, and Sq. for 
conditional volatility. In parentheses are presented the standard deviations. 

 
Table 3: Volatility models 

 
FIGARCH (1,d,1) 

Series α  β  d  Akaike Schwarz 

CZK 0.26 0.69 0.59 0.66 0.67 
HUF 0.16 0.3 0.29 0.95 0.96 
PLN 0.12 0.32 0.32 1.69 1.7 
RON 0.28 0.67 0.6 1.65 1.66 

IGARCH (1,1) 
CZK 0.09 0.91 - 0.66 0.67 
HUF 0.03 0.97 - 0.98 0.99 
PLN 0.14 0.86 - 1.7 1.71 
RON 0.13 0.87 - 1.65 1.67 

GARCH (1,1) 
CZK 0.08 0.9 - 0.66 0.67 
HUF 0.09 0.87 - 0.97 0.98 
PLN 0.12 0.84 - 1.7 1.71 
RON 0.14 0.86 - 1.65 1.66 

Source: Own calculations. 


