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Abstract 

The purpose of the present work is to study the fractal properties of the London 
Metal Exchange (LME) returns time series. Special emphasis is given to the fundamental 
issue of detection, identification, and measurement of scaling behaviour of LME returns time 
series.  A fractal approach through ARFIMA models is used to analyze the LME time series. 
The stable distribution has also been used in order to test the Fractal Market Hypothesis 
(FMH) in the case of LME market. It is demonstrated that LME returns data possess to some 
extent fractal properties. The findings are in line with the FMH. 
Keywords: ARFIMA model, stable distribution, Fractal Market Hypothesis 
 
1. Introduction 
 

The study of the distribution of stock and commodity price changes has 
been examined in several empirical studies (Houthakker, 1961), (Cornew, Town and 
Crowson, 1984), (Blattberg and Gonedes, 1974), (Hall, Brorsen and Irwin, 1989), 
(Poitras, 1990). 

The main conclusion of these empirical results is that the distribution of 
price changes is not Gaussian or normal but leptokurtic. In addition, it is well known 
that the crucial assumption of the Capital Market Theory is that returns are normally 
distributed, which is based on the Efficient Market Hypothesis (EMH). This implies 
that the future would be unrelated to the past with no possibility of identifying trends 
or cycles. If the returns are not Gaussian then the Capital Market Theory does not 
hold. 

The concept of fractals has been introduced in financial time series by 
(Mandelbrot, 1963). Mandelbrot found a similarity between various charts of cotton 
price changes with different time resolution. He concluded that such scale invariance 
could help to characterize many complex phenomena seen in physical sciences. 
Fractal concepts have been applied to a wide range of economic subjects, providing 
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a useful tool to investigate the complex behaviour of financial time series. Since the 
first work by (Mandelbrot, 1963), many efforts have been made in order to examine 
Mandelbrot’s hypothesis according to which returns follow a family of stable 
Paretian distributions. 

The development of fractal mathematics - (Feder, 1989) and (Falconer, 
1990) - has shown that highly irregular observations such as stock returns can be 
quantified in a new way (Mandelbrot, 1982). This irregularity is statistically “self-
similar”, i.e. it is the same at any scale on which the object is viewed. In fact, scaling 
is the dominant property of fractals. 

Closely related to fractals are stable distributions. Stable distributions are 
frequently associated with fractional Brownian motion and therefore are related to 
processes with memory effects. 

This study uses the Hurst exponent and ARFIMA models to detect both a 
possible fractal structure and long run dependence in the returns. However, the Hurst 
exponent gives no direct information about the underlying distribution of returns. 
Thus, this study also examines the hypothesis that the distribution of metal price 
returns is stable. Empirical studies that have rejected the EMH have applied 
alternative statistical models to account for the rejection of the EMH model. Such a 
well known model is the Fractal Market Hypothesis (FMH) which is related to the 
stable distribution. 

The investigation of the FMH for metal commodities is of special 
importance. To our knowledge, there are few studies that have applied the long 
memory prices in the London Metal Exchange (Panas, 2001b). However, these 
studies did not examine whether the commodity returns follow Gaussian or stable 
distribution: an important question from both empirical and theoretical points of 
view. 

The outline of the paper is as follows. In Section 2 a brief review of FMH 
is presented. Section 3 develops the R/S and ARFIMA statistical models. Section 4 
includes a description of stable law and the method of estimation of its parameters. 
Section 5 summarizes the results. 
 
2. Fractal Market Hypothesis 
 

Bachelier’s hypothesis (Bachelier, 1900) that stock price changes are 
normally distributed was left unchallenged until (Mandelbrot, 1963). Bachelier 
developed and tested, on commodity price data, a mathematical model based on the 
assumption that prices should have independent additive increments. 

The first investigation of the probability distribution of stock price changes 
can be found in Osborne’s study (Osborne, 1959). Assuming that (i) price changes 
across transactions are identically, independently distributed (iid) random variables 
with finite variance and (ii) transactions are evenly distributed over time and occur 
in a large number over a period of days, weeks or months, it follows that daily, 
weekly and monthly price changes will be the sum of iid random variables, and 
according to the central limit theorem, they must converge to a normal distribution. 
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Since the stock market has a large number of investors, there is an 
underlying assumption that today’s change in stock price is caused only by today’s 
unexpected new information. In other words, this implies that there are no 
“memory” effects: today’s returns are independent of the behaviour of returns 
yesterday. According to earlier capital market efficiency theories (Fama, 1970), this 
means that stock price returns follow normal distribution and the information arrives 
at an investor’s linearity.  

Stock returns are normally distributed and follow a random walk model. The 
so called random walk hypothesis of Osborne has evolved into Fama’s efficient 
market hypothesis (EMH) (Fama, 1970). The random walk ensures that past events 
have no effect and that the best guess of future stock prices is the current stock price 
plus a random variable. 

Samuelson (Samuelson, 1965) developed the EMH to rationalize the 
random walk behaviour. He argued that the current stock price pt fully reflects all 
relevant information. However, in almost all cases the stock returns show a higher 
peak around the mean and fatter tails. This indicates that returns are not normally 
distributed. 

Mandelbrot, using the assumption of independence, concluded that a stable 
distribution exists, where as k increases the rescaled log-k returns, k-1/α (logpt+k – 
logpt) would tend towards a stable random variable of characteristic exponent α. For 
cotton prices the estimated α equals 1.7, which corresponds to a Hurst exponent 

59.=
α
1

=H
. This scaling behaviour deviates considerably from the expected 

EMH hypothesis of the Gaussian distribution where 2
1

=H
. Mandelbrot 

(Mandelbrot, 1963) showed that the independence of price changes and the 
theoretically desirable property of stability of the distributions of price returns could 
be reconciled with the leptokurtosis (fat tails) found in the empirical distributions. 

Non-linearity of stock returns has been investigated extensively in the 
literature, the most recent studies being those of (Akgiray and Booth, 1988), (Jansen 
and de Vries, 1991), (Buckle, 1995), (Mantegna and Stanley, 1995), (McCulloch, 
1997), (Panas, 2001a) and (Kanellopoulou, Panas, 2008). Since the stock returns 
showing non-normality are independent and show characteristics of nonlinearity, 
this is evidence of market inefficiency. This reflects the EMH hypothesis, which is 
not justified by real data. 

In place of the EMH, the Fractal Market Hypothesis (FMH) is a new model 
proposed by Peters (Peters, 1990), (Peters, 1994). The Fractal Market Hypothesis 
emphasizes the impact of information and investment horizons on the behaviour of 
investors. In other words, rather than emphasizing market efficiency, the FMH 
focuses on liquidity as the cornerstone holding markets together (Peters, 1994). 

Peters (Peters, 1994) proposed the following assumptions for the FMH: 
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the market consists of many individuals with a large number of different 
investment horizons; 

information has a different impact on different investment horizons; 
the stability of the market is largely a matter of liquidity (balance of supply 

and demand). Liquidity is present when the market is composed of many investors 
with many different investment horizons; 

prices reflect a combination of short-term technical trading and long-term 
fundamental valuation; 

if a security has no tie to the economic cycle, then there will be no long term 
trend. Trading, liquidity and short-term information will dominate. 

Furthermore, Weron and Weron (Weron and Weron, 2000) have developed 
a new model to justify asset returns, adopting the Fractal Market Hypothesis, while 
Blackledge (Blackledge, 2008) has shown that market volatility can be predicted by 
a signal directly related to the fractal dimension and has used as an example the 
FTSE close-of-day data for the time period 1980-2007.  

A model which has been employed by researchers to examine the FMH is 
the family of stable distributions. The stable distributions are fractals with a self-
similar (power-law scale invariant) behaviour with respect to time (Walter, 1990). 
They have thick tails, and hence increase the likelihood of the occurrence of large 
shocks (crashes, booms, discontinuous price jumps in the stock market). The 
efficient market hypothesis (EMH) has α=2, while the fractal market hypothesis 
(FMH) has α in the range 1<α<2. 
 
3. Time series characteristics of metal prices 
 

The London Metal Exchange (LME) market is the largest active metal 
market in the world. The metal futures prices are derived from the LME. In 
particular, the near one–month contracts comprising daily closed metal prices are 
provided by the LME and cover the period from January 1989 to December 2000 
(2987 observations) (the tin series begins in August 1989). Thus, in this study we 
analyse the daily pricing for non-ferrous metals: aluminium, copper, lead, tin, nickel 
and zinc. 

 
Descriptive statistics of metal prices 

 
The price series obtained from the LME are used to calculate series of 

returns for each of the individual industrial metals using the relationship: 
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The descriptive statistics for these daily returns are shown in Table 1.  
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Table 1: 
Descriptive statistics of metals price returns 

Statistics Aluminiu
m Copper Lead Zinc Nickel Tin 

Skewness -.07994 -.00793 -.37802 -.82493 -.13957 -
.468
67 

Excess 
Kurtosis 

7.41081 9.2245 12.167 11.308 6.8835 9.42
50 

Bera-Jarque 2424 4820.6 10527.5 8928.1 1886.1 5027
.6 

Q(30) 68.14 116.5 121.8 75.7 58.2 62.1 

QS(30) 1399.9 1118.7 1387.8 351.4 709.8 516.
1 

 
From Table 1 it follows that the return series are all negatively skewed, i.e. 

the distribution of these series is skewed to the left. The kurtosis coefficients are in 
all cases significantly leptokurtic, in which case the tails of their distribution taper 
off to zero more gradually than the tails of a normal distribution of the same 
variance do. It is interesting to note that the lead and zinc returns appear to be more 
leptokurtic than the other metal returns. The combination of a significant asymmetry 
and leptokurtosis indicates that the metal returns are non-normally distributed. In 
addition, the Bera-Jarque test rejects the null hypothesis of a normal distribution for 
all price returns. These results imply that returns on non-ferrous metals are not 
normally distributed, and according to (Fang, Lai and Lai, 1994), “the significant 
deviations from normality can be a symptom of non-linear dynamics”.  
 
Stationarity 
 

If we have a stationary time series, then their statistical properties do not 
change over time. Thus, stationarity is an important property. To test the stationarity 

of a time series }{ )P/Plog(=Z 1-ttt , the conventional Dickey-Fuller (Dickey and 
Fuller, 1979), (Dickey and Fuller, 1981) and Phillips-Perron (Phillips and Perron, 
1988) τ and z tests are used, the null hypothesis being that the series contain a unit 
root. Table 2 presents the τ and z tests for returns in the metal market.  
 

Table 2:The Augmented Dickey-Fuller (τ), Phillips-Perron (z) and KPSS tests 
Statistics Aluminium Copper Lead Zinc Nickel Tin 
τ -23.5 -24.6 -25.4 -24.3 -23.8 -24.6 
z -54.5 -61.7 -62.9 -55.1 -53.9 -55.6 

μn
 

.106 .061 .057 .038 .073 .092 

rn .168 .255 .122 .047 .106 .111 
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Note: The critical values at the 5% level are .463 and .146 for the μn
 and τn

 statistics respectively. 
Using the augmented Dickey-Fuller and Phillips-Perron (PP) tests, the root 

hypotheses for all the return series of metals commodities are rejected – see Table 2. 
Thus, the results strongly reject the presence of a unit root, implying that the first 

differences )log(log 1−− tt pp  or the returns are stationary. 
In contrast to the Dickey-Fuller and Phillips-Perron tests, the Kwiatkowski-

Phillips-Schmidt-Shin test (KPSS) (Kwiatkowski, Phillips, Schmidt and Shin, 1992) 
breaks a time series variable into two components, a stationary component and a 
random walk component. The KPSS test provides an alternative way of testing the 
null hypothesis of stationarity against the alternative of a unit root. Table 2 also 
presents the results of the KPSS tests ημ (for the null of level stationarity) and ητ (for 
the null of trend stationarity). 

The KPSS tests show that for aluminium and copper the null hypothesis is 
rejected, while for the remaining commodities the null hypothesis is accepted. In the 
case of these two commodities – aluminium and copper – the PP and KPSS tests 
provide conflicting results. The contradictory inference obtained from the PP and 
KPSS tests may be evidence that these commodities have low-frequency behaviour, 
i.e. a fractional differencing process may provide a more appropriate representation. 
In addition, with regards to the ητ KPSS statistic, since the aluminium and copper 
returns reject the null hypothesis of trend stationarity and given that efficient market 

theory predicts 0)r(E 1t =+ , the presence of a trend in the returns is unlikely. 
 
Structure of autocorrelations 
 

The patterns of autocorrelations offer valuable information for the purpose 
of modeling linear or nonlinear dynamics. Table 1 reports the Ljung-Box Q statistics 
for up to 30 lags for returns – Q(30) – and squared returns – QS(30). The Q(30) 
statistic for testing the hypothesis that all autocorrelations up to lag 30 are jointly 
equal to zero in the LME market is greater than the value of x2 distribution with 30 
degrees of freedom at the 5% level, suggesting that the null hypothesis of the 
independence of returns should be rejected. Thus, linear serial dependencies seem to 
play a significant role in the dynamics of London Metal Exchange returns. The next 
question, and the most important one for the study of the behaviour of nonlinear 
dependencies in metals returns, is: do these returns also exhibit nonlinear serial 
dependencies? The easiest way to answer this question is by examining the 
autocorrelation behaviour of squared daily returns. The values of QS(30) - see Table 
1 - provide strong evidence of non-linear dependence. 

The results up to this point suggest that there is very strong evidence of non-
linear structure in daily LME return series. These results are consistent with the 
hypothesis that these returns are being generated by some sort of non-linear 
stochastic process, such as long memory process, or a deterministic process such as 
chaos. Consequently, non-linearity can be analysed on the basis of long memory and 
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chaos theory. In perspective, these approaches could provide new elements useful in 
the analysis of non-linearity of daily LME returns. 
 
4. Long memory process 
 

Einstein originally proved that the distance R covered by a particle 
undergoing random collisions is proportional to the square root of time T to measure 
it: 

2
1

TκR ⋅=  
Hurst (Hurst, 1951) generalized the above equation of Einstein, which is 

valid for the Brownian motion, in order to investigate the dynamic properties of a 
time series. In this framework, the generalization proposed by Hurst was: 

HTκ
S
R

⋅=
 

where (R/S) is the range of the cumulative deviations from the mean divided 
by the standard deviation. H denotes the Hurst exponent. The statistic was used to 
quantify the persistence or antipersistence of feature details. We note that H 
exponent values range between 0 and 1. If H=.5, the behaviour of the time series is 
similar to random walk, i.e. the market has a 50% chance of going up (or down) the 
next day; if H>.5 a persistent trend is characterized by repetitive behaviour. For 
example, if a high price value of aluminium occurs at time t=κ then at time t=κ+1 
one would expect the probability of another high price value of aluminium to be 
greater by .5. In this case (H>.5) the time series is a black noise process and 
indicates that the process has persistence, or memory. If H<.5 the behaviour of the 
time series is antipersistent, that is, if a price value of aluminium occurs at time t=κ 
then at time t=κ+1 one would be more likely to see a low price value and vice versa. 
In this case (H<.5) the system is termed a pink noise antipersistent process. Thus, 
the H statistic summarizes the persistence or antipersistence of a time series. For a 
time series X(t) embedded in the space (X(t), t) the fractal dimension D, is given by  

H2D −=                                          (1) 
For a time series with total observations T and an integer n, n≤T, the R/S 

statistic is defined as: 

)n(S
)n(R)n(Q =

 
where R(n) is the range given by 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎟
⎠
⎞

⎜
⎝
⎛ −−⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
⎟
⎠
⎞

⎜
⎝
⎛ −=

−

=

−

=
∑∑ ΧΧminΧΧmax)n(R j

n

1j
j

n

1j

, nj1 ≤≤  



European Research Studies,Volume XIII, Issue (2) 2010 
  

 

200

and S(n) is the sample standard deviation of Xt over the period of n. As n 
increases, the following holds: 

)nlog(Hstantcon
)n(S
)n(Rlog ⋅+=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

                    (2) 
where H is the Hurst exponent. 

Thus, the Hurst exponent can be obtained by regressing ( ))n(S/)n(Rlog  

on )nlog(  for different values of n.  
The main advantage of the above R/S analysis is that the procedure of H 

estimation is independent of the distribution assumption for a given time series. 
However, the R/S statistic was reported to have bias when (i) the series contains the 
short-term memory (ii) the series is characterized with heterogeneities and (iii) the 
series is non-stationary. 

Lo (Lo, 1991) proposed a modified version of the R/S statistic, which is 
robust even in the presence of a short memory process and heterogeneity. Lo’s 
modified R/S statistic can be defined as follows: 

[ ]q)n(S
)n(R)n(Z =

                                    (3) 
where S(n) is replaced by [S(n)]q: 

[ ] ( )∑
=

⋅+=
q

1j
jj0

2
q c)q(ω2c)n(S

 
and cj is the jth order autocovariance of Xt and ωj(q) is the Bartlett window 

weight: 

1q
j1)q(ω j +

−=
,  nq <  

and q is the optimal lag of autocovariances.  
The Hurst exponent H is used to measure the intensity of so-called long-

range dependence. According to Mandelbrot (Mandelbrot, 1982), long-term 
correlations and self-similar patterns in time series can be evaluated by techniques 
based on fractal concepts. The Hurst exponent is also known as a self-similarity 

parameter since the processes }{ Tt),tλ(Χ ∈  and { }Tt),t(ΧλH ∈⋅  have identical 
finite-dimensional distributions for all 0λ > . Thus, the Hurst exponent H has 
proved a meaningful way of characterizing long memory phenomena or self-similar 
correlations in physical, biomedical and economic systems.  

The economics literature recognized its usefulness in economic time series 
when Granger (Granger, 1966) first reported the empirical finding that the typical 
shape of an economic time series followed the pattern of a long memory. Diebold 
and Rudebusch (Diebold and Rudebusch, 1989) found significant long memory 
estimates for various measures of US GNP series, while Sowell (Sowell, 1992) 
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found long memory estimates for quarterly postwar GNP series. Baillie, Chung and 
Tieslau (Baillie, Chung and Tieslau, 1996) and Hassler and Wolters (Hassler and 
Wolters, 1995) considered the inflation rates of ten and five industrialized countries 
respectively. 

Long memory processes have been found using financial market time series. 
Greene and Fielitz (Greene and Fielitz, 1977) and Aydogan and Booth (Aydogan 
and Booth, 1988) reported long memory for stock returns. Ding, Granger and Engle 
(Ding, Granger and Engle, 1993) considered the power transformation of stock 
returns and found long memory results. In addition, major applications were made to 
exchange rates and real interest rates. For real exchange rates under the gold 
standard, Diebold, Husted and Rush (Diebold, Husted and Rush, 1991) found long 
memory results, while Shea (Shea, 1991), Backus and Zin (Backus and Zin, 1993) 
and Crato and Rothman (Crato and Rothman, 1994) found long memory results for 
various bond yields and real interest rates. Baillie (Baillie, 1996) has presented an 
empirical review of the long memory findings in the economics literature.  

While the existence of a long memory effect was questioned in the 
economic literature, the metal commodities literature has very little empirical 
evidence on this issue. When, Richard Baillie made his literature review on long 
memory processes in 1996, studies of applications on metal prices did not exist. We 
consider this a serious omission. 

Recently, Labys, Lesourd and Badillo (Labys, Lesourd and Badillo, 1998), 
in their attempt to study metal prices and the business cycles, examined the time 
series characteristics of metal prices and concluded: "The R/S analysis, the exponent 
of Hurst and the ARFIMA test results suggest the presence of an anti-persistence 
phenomenon. This means that some phases of a price increase have a tendency to be 
followed by some phases of price decrease and that the included series display some 
type of non-periodic short cycles. Finally, the tests for chaos also reject that 
independence is caused by non-linearity of a stochastic nature." The small number 
of observations - a factor of primary importance in this type of tests - these authors 
used to test the non-linear dynamics, casts doubt on the reliability of the above 
conclusion. The purpose of the present study is to examine whether metal 
commodities time series really possess long memory or whether these series can be 
better modeled by other models.  

In this study, equation (2) was estimated for daily LME returns. Table 3 
shows the results for Hurst exponent which in the economic literature varies 
between H=.45 and H=.6 (Mandelbrot, 1963), (Evertsz and Berkner, 1995) and 
(Müller, Dacorogna, Olsen, Pictet, Schwarz and Morgenegg, 1990). The Hurst 
exponent for the series is higher than the expected .5 (random walk series). The 
main result of our analysis is that, for all metal commodities, the Hurst exponent is 
well above .5. This result is an indication of the existence of long-range 
dependencies in the fluctuation dynamics. 

 
 



European Research Studies,Volume XIII, Issue (2) 2010 
  

 

202

Table 3: Hurst exponent (H) and Lo’s Z(n) statistics 
Statistics Aluminium Copper Lead Zinc Nickel Tin 
H .58604 .59368 .58294 .67235 .58682 .51420 
Z(n) 2.10* 1.485 1.575 1.556 1.390 1.323 

Notes:   (i)     The null hypothesis is that H0: Zt carries no long memory.  
                     The alternative hypothesis is H1: Zt as long memory. 

(ii) Critical values – see Lo (1991): 10%:1.62 and 5%:1.747. Significant at 
the 5% level. 

 
In the case of zinc, we have H= .67235; if the market was up, it would have 

a 67% chance of staying up the next day. Our results are consistent with estimates of 
the Hurst exponent for the various stocks and exchange rates reported. Since metal 
commodities - see Table 3 - have H values greater that .5 they are considered as 
fractal. An additional observation is that zinc has a higher value of H than other 
commodities. A high Hurst exponent value shows less noise, more persistence and 
clearer trends, than lower values do. In other words, the higher the value of H is, the 
lower the corresponding risk is.  

However, the above results for the Hurst exponent remain to be clarified 
further since the R/S analysis is sensitive to heterogeneities. For this case we used 
Lo’s Z(n) statistics. Table 3 reports the estimates of Z(n) statistics. As suggested by 
Z(n) estimates, aluminium, copper and lead contain long memory structure while 
zinc, nickel and tin are not long memory processes. 

An additional check to determine whether the series }r{ t  follows a long 
memory process or not is based on the estimation of an autoregressive fractionally 
integrated moving average model of order (p, d, q), denoted by ARFIMA (p, d, q). A 

long memory process is identified if }{ tr  satisfies the equation: 

tt
d u)L(Θr)L1)(L(Q ⋅=⋅− , )σ,0(iidu 2

ut =  

where d is allowed to be any real number, and 
d)L1( −  is the fractional 

differencing operator defined by: 

∑
∞

= −+
−

=−
0k

k
d

)d(r)1k(r
r)dk(r)L1(

 
Both polynomials, )L(Q  and )L(Θ , are assumed to have no common roots, 

and these roots of the AR polynomial )z(Q  and of the MA polynomial Cz),z(Θ ∈  
are assumed to lie outside the unit circle. For 5.d5. <<−  the process is stationary 

and invertible, while for 5.d >  the variance of rt is infinite and rt is non-stationary. 
The ARFIMA (p,d,q) process exhibits long memory for d>0 while d=0 corresponds 
to the presence of short memory. The value of d may be estimated using several 
techniques, such as semiparametric estimation (Geweke and Porter-Hudak, 1983), 
(Robinson, 1995), approximate maximum likelihood estimation in the frequency 
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domain (Fox and Taqqu, 1986), exact maximum likelihood estimation in the time 
domain (Sowell, 1992), Bayesian techniques (Koop, Ley, Osiewalski and Steel, 
1997) and bootstrapping (Andersson and Gredenhoff, 1998). Here, the d value for 
each of the commodities is estimated using Sowell’s maximum likelihood approach. 
Table 4 reports the exact maximum likelihood estimates for d for various ARFIMA 
models. 

Table 4: Maximum Likelihood Estimates of Long Memory Parameter 
Metal Commodities (0, d, 0) (0, d, 1) (1, d, 1) 
Aluminium .05881 

(1.69) 
.08984 
(1.80) 

.09595 
(1.88) 

Copper .0692 
(1.85) 

.04764 
(2.5) 

.05243 
(2.3) 

Lead .02820 
(1.5) 

.03406 
(1.38) 

.2930 
(.66) 

Zinc -.02315 
(1.6) 

-.04568 
(1.1) 

-.08468 
(1.3) 

Nickel .01621 
(.92) 

.03799 
(1.1) 

.07825 
(1.03) 

Tin -.03886 
(1.71) 

-.04001 
(1.2) 

-.03841 
(.67) 

Note: Asymptotic absolute t-values displayed in parentheses. 
 

Schmidt and Tschering (Schmidt and Tschering, 1993) discuss the 
identification of ARFIMA models using information criteria. Using the Akaike 
(AIC) and Swartz Bayesian information (BIC) criteria for all markets, an ARFIMA 
(1,d,1) is chosen. The estimates of d from the ARFIMA (1,d,1) do not equal zero for 
aluminium and copper. The estimates of the ARFIMA models provide evidence for 
long memory in the aluminium and copper returns. The conclusion that the returns 
of the aluminium and copper have long memory behaviour means that correlations 
between price changes die out very slowly so that the actual movements in the 
market are stochastically influenced by the recent to the furthest past. 

In the case of lead and nickel returns, the null hypothesis Ho:d=0 was 
accepted, suggesting that the behaviour of these time series exhibits short memory 
process. From Table 4 it follows that d is less than zero for zinc and tin. At a first 
glance, it appears that these returns follow an anti-persistent process in which these 
values in the returns are negatively correlated over short time scales. 
 
5. Estimation of stable distributions for LME 
 
 In this section we investigate the use of stable distributions for closed metal 
prices. The justification for this is the evidence in section 2 (time series 
characteristics in metal prices) which proves that closed metal prices are almost 
always heavy tailed. We first make a short introduction to stable distributions and 
then, we go on to estimate stable parameters for LME data. 
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 The α-stable distribution is a generalization of the Gaussian distribution 
which satisfies two properties. First, it satisfies the stability property, which states 
that if X, X1 and X2 are α-stable independent random variables of the same 
distribution, then there exists a positive number ν and a real number d such that: 

2211

d
XμXμdvX +=+               (4) 

where μ1 and μ2 are constants and d denotes equality in distributions. Note that 
α
2

α
1

α μμν +=  
for some ]2,0(α∈ , which is called the index of stability or characteristic exponent. 
X is called an α-stable random variable. When d=0, X is called a symmetric α-stable 
random variable. The implication of (4) is that the tail index is unchanged when 
independent stable random variables are summed. The economic implication is that 
if individual stock returns are stably distributed, the stability property of stable 
distributions implies that portfolio returns are also stably distributed as well. Second, 
an α-stable distribution satisfies the generalized central limit theorem 
(Samorodnisky and Taqqu, 1994). 
 Due to the lack of a closed form formula for densities, the stable distribution 

can be conveniently described by its characteristic function )t(φ . The characteristic 

function )t(φ  is the Fourier transformation of a probability density function and for 
stable distributions is given by 
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The parameters λ, α, β and γ describe completely a stable distribution. The 
characteristic exponent or “degree of fractality” α controls the heaviness of the tails 
of the stable distribution. The characteristic exponent α, can take values in (0,2]: a 
smaller value implies heavier tails and α=2 is the Gaussian case. All stable 
distributions with α<2 possess infinite variance. The index of skew β, controls the 
symmetry of the stable distributions and takes values in [-1,+1]. When β=0, the 
distribution is symmetric, β>0 implies that the distribution is skewed to the right and 
β<0 implies skewness to the left. The dispersion parameter γ, which determines the 

spread of the density around its location parameter, takes values in )( ∞+,0 . The 
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location parameter, λ, corresponds to the mean for 2α1 ≤<  and the median for 
1α0 ≤< . It takes values in )( ∞+∞− , . 

 The most popular method of parameter estimation is that of (Fama and Roll, 
1968) and (Fama and Roll, 1971), which was later extended by (McCulloch, 1986). 
This is the method used in this study to estimate the parameters and a short 
description is given below. 
 The four stable parameters are estimated as follows: The pth quantile of a set 
of data is defined as the value xp that satisfies f(xp)=p. Thus for a data set of size N, 

fx̂  refers to the p(N+1)st order statistic of the set, which we can use as an estimate 
of xp. The four stable parameters are estimated as follows: 

    
( )β,αφ

x̂x̂
x̂x̂

k̂ 1
25.75.

05.95.
α =

−
−

=
 

    
( )β,αφ
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The φ functions can be inverted to yield y1 and y2: 

    ( )βα1 κ̂,κ̂yα̂ =  

    ( )βα2 κ̂,κ̂yβ̂ =  
McCulloch supplies tables of the values of these functions for determining α and β. 
The scale parameter can be estimated by: 

    ( )β̂,α̂φ
x̂x̂

γ̂
3

25.75. +
=

 
Finally, the location parameter λ can be estimated by: 

    ( )β̂,α̂φγ̂x̂λ̂ 550. +=  
 The McCulloch type estimates of the four stable parameters for daily data 
are reported in Table 5. Tables 5, 6 and 7 show the estimates of the four parameters 
of stable distribution for daily, weekly and monthly returns respectively. For daily 

data the estimates of α̂  range from 1.48 to 1.62; the estimates of β̂  are between -
.009 and .12. For weekly data, the estimates of α̂  are between 1.4 and 1.51; two of 

the estimates of β̂  are negative. For monthly returns the estimates of α̂  are between 
1.36 and 1.58. 
 The stability index α of all six metal commodities does not equal 2. The 
most important feature of the estimates of the index of stability  α  is that it 
determines how non-Gaussian a particular density becomes. Our empirical evidence 
– see Section 2 – tells us that the distribution of metals returns deviate significantly 
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from Gaussian distribution, exhibiting excess kurtosis and fat tails. We can therefore 
conclude that the metal returns are not normally distributed. 
 If the underlying distributions of commodities are stable then the estimates 
of the stability index α and the index of skew β for daily, weekly and monthly data 
should be statistically indistinguishable invariant of stable distributions i.e. two 
stable distributions can be added or subtracted from each other without changing the 
shape of the distributions. This follows from the stability property since the weekly 
and monthly data are linear combinations of daily series. 
 From Tables 5, 6 and 7 it follows that the stability index α is not increasing 
with the sum size. Tables 5, 6 and 7 show that the stability index and skewness do 
not differ that much in daily, weekly and monthly scales. This is a clear validation of 
the stability property. This finding means that the stable law hypothesis could be 
accepted in metal commodities returns of LME and therefore, we could say that the 
metal returns are characterized by a fractal structure. 
 

Table 5: Stable Law Parameter Estimates for LME (Daily data) 
Metal Commodities λ̂  β̂  

α̂  γ̂  
Aluminium -.00054 .021 1.62 .0074 
Copper -.0005 -.01 1.57 .0087 
Lead -.0006 .11 1.59 .0093 
Nickel -.00011 .042 1.51 .010 
Tin .00002 -.009 1.47 .0056 
Zinc -.0006 .091 1.48 .0085 
 
 

Table 6: Stable Law Parameter Estimates for LME (Weekly data) 
Metal Commodities λ̂  β̂  

α̂  γ̂  
Aluminium -.00008 .038 1.45 .0079 
Copper -.00014 -.01 1.49 .009 
Lead -.0008 .14 1.51 .0093 
Nickel -.0003 .056 1.45 .0096 
Tin -.00002 -.01 1.40 .006 
Zinc -.0005 .036 1.47 .0081 
 

Table 7: Stable Law Parameter Estimates for LME (Monthly data) 
Metal Commodities λ̂  β̂ α̂  γ̂  
Aluminium -.00404 .099 1.36 .008 
Copper .00004 -.018 1.48 .009 
Lead -.0007 .118 1.52 .010 
Nickel -.0007 .039 1.42 .0095 
Tin .00012 -.009 1.41 .05 
Zinc -.0004 .018 1.58 .0100 
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6. Conclusions 
 

This study has examined the presence of the long memory property and the 
Fractal Model Hypothesis in daily returns of metal commodities traded on the 
London Metal Exchange (LME). The scaling form may reveal important 
information about the fundamental interactions that take place in a financial time 
series. We have demonstrated the scaling properties of metal commodities which are 
similar to those observed in stock returns. Probability density function estimates 
indicate that the returns of metal commodities are stably distributed; hence, the 
results are compatible with the Fractal Market Hypothesis (FMH). The presence of 
fatter tails indicates “memory” effects which arise due to non-linear stochastic 
processes; as a consequence, the information flow to an investor is irregular rather 
than smooth. 
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